
TPAoPI:A Thread Partitioning Approach Based on Procedure Importance in
Speculative Multithreading

Yuxiang Li
School of Information Engineering,

Henan University of Science and Technology
Henan Joint International Research Laboratory

of Cyberspace Security Applications
Luoyang, China

Email: liyuxiang@haust.edu.cn

Danmei Niu
School of Information Engineering,

Henan University of Science and Technology
Henan Joint International Research Laboratory

of Cyberspace Security Applications
Luoyang, China

Email: niudanmei@163.com

Zhiyong Zhang
School of Information Engineering,

Henan University of Science and Technology
Henan Joint International Research Laboratory

of Cyberspace Security Applications
Luoyang, China

Email: xidianzzy@126.com

Lili Zhang
School of Information Engineering,

Henan University of Science and Technology
Henan Joint International Research Laboratory

of Cyberspace Security Applications
Luoyang, China

Email: lillyzh@126.com

Abstract—Thread partitioning is a core part of thread-level
speculation (TLS) to achieve parallelization of irregular serial
programs. The existing thread partitioning methods mostly
adopt a unified partitioning scheme for all procedures in the
same program, so that some procedures cannot obtain their
best partition. This papers proposes a thread partitioning
approach based on procedure importance (TPAoPI), which
chooses to start with importance of procedures in irregular pro-
grams, adopting interdisciplinary research methods, creatively
introducing the theory of importance in reliability theory, and
calculates importance of procedures based on the characteris-
tics of procedures. On the basis of the initial partition scheme,
a manual intervention scheme suitable for the procedure is
developed according to the importance of procedure, and a new
performance evaluation model is used to theoretically evaluate
obtained speedups, so that the best partitioning schemes of
procedures are identified, exploring the intrinsic law that
characteristics of procedures influence their best partitioning
schemes. The paper does research from three aspects: calculat-
ing importance of procedures, generating the best partitioning
schemes of procedures, and building a performance evaluation
model, in order to fully exploit the potential parallelism for
irregular programs. This paper provides a method for the
research and applications of irregular programs parallelization
and multi-core parallel computing.Experimental results show
TPAoPI delivers an average 20.59% performance improvement
than machine learning(ML)-based thread partition approach.

Keywords-thread partition approach, thread-level specula-
tion, adaptive, expert knowledge

I. INTRODUCTION

The existing thread approaches are mainly divided into:
thread partition approach based on heuristic rules [1], thread

partition approach based on machine learning [2], graph-
based thread partition approach [3] and so on. During the
thread partition, the thread partition scheme is determined
according to the heuristic rule, and the insertion positions
of the thread partition statements are determined along the
path of the program execution flow; Literature [4] used the
minimum cut algorithm of the graph to partition program
flow graphs, and uses heuristics to balance the cost of
data dependence, performance cost, load imbalance and
other factors. Literature [5] used heuristic rules to determine
the granularity, priority, etc. of each thread after thread
partitioning on the critical path of program execution.

In recent years, the development of machine learning has
also shown strong predictive power in thread partitioning.
Literature [6] used the clustering method to search for
effective thread solution space to obtain a better thread
partitioning. Literature [7] proposed a KNN-based thread
partitioning method. The method mainly consisted of two
parts: generation of the training sample set and extraction
of knowledge contained in the sample set, and the k-most
similar samples are selected by the similarity between each
unknown program and the sample to determine the thread
partition scheme of the program. Literature [8] used a
machine learning method to partition stream programs on
a mobile and automated compiler, learned prior knowledge
offline and predicted the partitioning structure of unknown
programs.

Literature [2] proposed a graph-based thread partitioning
method, in which WCFG was used to formalize the expres-
sion of irregular programs, and machine learning methods



were used to learn thread partitioning knowledge and predict
a thread partitioning scheme for unknown programs. In
[9], the graphs are divided into sparse irregular data. A
multi-thread graph divider mt-Metis was proposed, and 20
different graphs in multiple fields were used on 36 cores to
verify the effectiveness of the method.

However, the above four types of thread partition methods
regarded one program as the basic partitioning unit. When
partition one program, these three types of thread partition
methods adopted a unified partition scheme for all proce-
dures of one program, leading to ignore the difference of
the procedure, and some procedures cannot obtain their best
partition. So, it is urgent to carry our the relevant research
to obtain the optimal partition schemes for all procedures
in programs.Based on the initial partitioning scheme of the
machine-based thread partitioning method, this paper uses
the interdisciplinary research method to creatively bring the
importance theory (Importance Theory) in the reliability the-
ory into the thread partition method. According to the char-
acteristics of the procedures, its importance is calculated,
and the manual intervention is used to explore the implicit
partition based on the explicit partition method (manually
intervening the partitioning flags), and the performance
evaluation model is used to evaluate the acceleration ratio.
To find out the optimal partitioning scheme of the procedure,
it is verified that the effect of explicit parallelization is
always better than the theory of implicit parallelism.

The remaining parts of this paper are organized as
follows:in section II, we first briefly describe the SpMT
execution model; the overall research framework is present
in section III; in section IV, motivation of TPAoPI is
presented; section V presents the implementation of TPAoPI;
conclusion and future work are shown in section VI; finally
section VII presents acknowledgement.

II. DESCRIPTION OF EXECUTION MODEL

TLS parallelizes serial programs and performs parallel
execution on multi-core platforms to improve speedup per-
formance. Fig.1 presents the TLS execution model [2],
[10], in which the spawning point (SP) and the control
quasi-independent point (CQIP) instructions map the serial
programs into multithreaded programs. According to serial
semantics, there is only one thread that allows data to
be submitted to memory at each moment. This thread is
called a definite thread, and the other threads are regarded
as speculative threads. Every speculative thread consists of
two parts, including precomputation-slice (p-slice) [11] and
serial program code. P-slice is a small piece of code that
is generated by the compiler based on slicing techniques
to predict the live-ins used in speculative threads (a set of
variables to be referenced before the value is defined).

Fig.1 shows four cases of SpMT execution. In Fig.1(a),
it is assumed that a multithreaded program is equivalent
to a serial execution program because it ignores SP-CQIP.

Fig.1(b) shows the successful speculative execution: when
the thread T1 encounters sp, if idle cores exist, the new
speculative thread T2 is spawned; otherwise, the T2 is not
spawned. When T1 encounters CQIP, it will validate the
live-ins used by T2 in p-slice. If the validation is correct, T1
submits the execution results and releases the core resource.
Then, the execution permission is transferred from T1 to
the successor thread of T1; Fig.1(c) presents the state that
validation of T2 fails, and speculative execution fails so
to withdraw T2, and p-slice is not performed; Fig.1(d)
illustrates the situation of restarting the thread in the current
state when read-after-write (RAW) violation happens.

III. OVERALL FRAMEWORK

This topic takes the irregular serial programs that tra-
ditional parallelization methods are hard to parallelize as
the object. According to the importance of the program

′
s

procedures, the importance calculation model is constructed,
and its importance is calculated according to the procedure

′
s

characteristics. Based on the initial partition of the proce-
dures and artificial intervention, according to the importance
of procedures, the partitioning flags (sp-cqip) are manually
adjusted. In accordance with the performance evaluation
results, the optimal partition of procedure is finally deter-
mined, thus forming a sequential chain:”procedure

′
s char-

acteristics -> procedure importance -> manual intervention
-> performance evaluation -> best partition”. The sequential
chain realizes the overall research goal that the optimal parti-
tions are obtained for irregular programs, and the programs

′

parallelism is fully exploited. The specific research ideas and
research contents are respectively shown in Fig.2, Fig.3.

The research framework to be adopted is shown in Fig.3.
The research framework takes the irregular serial programs
as the input, and establishes the program complexity cal-
culation model, the generation of candidate thread partition
scheme, and the expert knowledge-based partition scheme
selection as the main research points, and selects the most
suitable thread partitioning scheme to execute the thread
partition. The results are run on Prophet simulator to obtain
speedups and programs

′
results.

IV. MOTIVATION OF TPAOPI

Based on the importance calculation of program
′
s pro-

cedure and manual intervention, this paper explores the
thread partition method for irregular programs , aiming
at maximizing the parallelism of programs and providing
necessary to make full use of the legacy serial programs
on multi-core environment. The specific three research sub-
goals are:

• Design of Performance Evaluation Model
According to the characteristics of the thread partition
method of this subject, a performance evaluation model
is designed to theoretically evaluate the speedup per-
formance and make up for the defects that the existing



SP

CQIP

(a)

S
e
q
u
e
n
tia
l
e
x
e
c
u
tio
n
tim
e

SP

CQIP

CQIP

success

P
a
ra
lle
l
e
x
e
c
u
tio
n
tim
e

(b)

SP

CQIP

CQIP

P
a
ra
lle
l
e
x
e
c
u
tio
n
tim
e

failure

(c)

SP

CQIP

CQIP

P
a
ra
lle
l
e
x
e
c
u
tio
n
tim
e

X

CQIP

RAW

(d)

Figure 1. Model of Thread-Level Speculation: (a) Sequential Execution; (b) Successful Parallel Execution; (c) Failed Parallel Execution; (d) RAW.

Irregular Serial Program Set

Importance Calculation of Irregular Programs Theoretically Evaluating Speedups

Building of Importance

Model

Generation of the Optimal Thread

Partition Schemes

Selecting The Most Suitable Thread Partition Scheme for Irregular Programs

Setting of Performance Evaluation

Model

Parallel

Computing

Mathematical

Modelling
Machine Learning

Probability

Analysis

Importance

Theory

Precondition

Related

Theories

Research

Content

Critical

Techniques

Research

Goals

Figure 2. Design Flow of Research

TLS performance evaluation method can not be used
in the thread division stage.

• Effective Construction of The Optimal Partition
Scheme of Program Procedures
Combined with the initial partition scheme generated
by the machine-level thread-level estimation technol-
ogy, the optimal partition scheme is constructed for
the program procedure by calculating the importance
of the program

′
s procedure and combining the perfor-

mance evaluation results.Verifying the effect of explicit
parallelization (ie, manual intervention partitioning) is
always superior to the theory of implicit parallelization
(ie, automatic parallelization).

• Exploring The Law that Program Characteristics Af-
fecting the Speedup Performance
By analyzing the factors affecting the parallelization of
programs, the program complexity model, the candidate
thread partitioning scheme set, the partitioning scheme
selection mechanism are established, and the laws that
program characteristics affect speedup performance are
explored, which provide a method for parallelizing

irregular programs on multi-core platforms.

V. IMPLEMENTATION OF TPAOPI

The TPAoPI is the abbreviation of thread partition ap-
proach based on procedures

′
importance. The implemen-

tation of it is as follows: firstly, on the foundation that a
machine learning-based thread partition method automatical-
ly generated program

′
s partition schemes, combining with

procedures
′

importance and manual intervention, the optimal
thread partition schemes are created; secondly, with perfor-
mance evaluation model, the program and its procedures are
evaluated, so to generate programs

′
output and speedups.

A. Generation of Procedures
′

Initial Partition Scheme and
Calculation of Procedure

′
s Importance

This topic will be divided into the following four steps:
i) according to the reference, irregular programs (Olden and
SPEC benchmarks) are selected as the to-be-divided assem-
bly; ii) compare and analyze the existing machine learning-
based thread partition methods, the partitioning method that
can best partition the Olden and SPEC programs so far is
selected; iii) an automatic thread partitioning of programs



Olden/SPEC

Sample Set

Sample

Generation

Machine

Learning

Knowl

edge

Unseen

Programs

A
p
p
lica
tio

n
S
electio

n

Partition Scheme

Predic

tion

Procedure

Call Tree

Procedure s

Importance

The Optimal

Partition
Partition

Sample Generation

based Machine

Learning

Manual

Intervention

Performance

Evaluation

Feedback

Speedups

Figure 3. Overall Research Framework

is selected to generate a program partitioning scheme as
the initial partitioning scheme of the procedures in the pro-
gram; iv) perform statistics for procedures

′
characteristics, a

procedure importance model is established to calculate the
importance of the process.

B. Generation of The Optimal Partition Scheme

The generating process of the optimal partition scheme is
a process of finding the optimal solution. This paper adopts
the following technical methods: i) the solution is the set of
partition scheme of the procedure, and the solution space of
the partition scheme is constructed; ii) the importance of the
procedure is designed to manually adjust the frequency and
step size; iii) traverse the procedure call tree, and search the
algorithm according to the partition scheme, so to find the
possible solution of the procedure; iv) among all the results
gotten by the performance evaluation model, the optimal
solution of the procedure is selected.

In the flow of Fig.4, the first is to establish the call
tree of the program

′
s procedure; the second is to stratify

the procedures to search for the best partitioning scheme;
wherein, the process call tree adopts a bottom-up traversal
sequence, and the same layer uses random order.

C. Establishment of Performance Evaluation Model

This paper comprehensively considers multiple specula-
tive parallel overheads such as thread conflict and restart,
inter-thread communication, thread distribution and submis-
sion, and load imbalance, and constructs a performance
evaluation model based on probability graph. This section
uses the following technical methods for this research: i)
combining the profiling information of the input program in
the run and the speculative control flow graph (SpCFG) of
the program, constructing the WCFG of the program and
the procedures

′
(the side in the figure represents branch-

es of the program) probabilities); ii) calculation of serial
execution time and speculative parallel time of programs

and procedures based on analysis of SpCFG and WCFG;
iii) calculation of serial execution time, parallel execution
time of programs and procedures and speedups respectively,
according to Amdahl

′
s law.

VI. EXPERIMENT AND ANALYSIS

In order to show the effectiveness of TPAoPI, this paper
makes a comparison between TPAoPI and the machine
learning-based (ML-based) thread partition method, which
makes use of programs as the partition unit. Olden bench-
marks [12] which have complex data dependence and control
dependence among basic blocks, are selected as the inputting
programs. When we analyze the experimental results, we
only compare the performance of the original ML-based
thread partition approach and TPAoPI, and then we will
analyze the experimental results, in which we only select
several program analysis in the Olden benchmarks.

The main data structure of the program health is a two-
way linked list, which contains both loop and nonloop
structure. In health, the loop structure is the main source
of parallelism, and compared with the HR-based partition
approach, you can obtain the partition scheme of health
suitable for its characteristics. During the partition of loop
partition, although the loops occupy most of the program,
but it has a large loop body and simple data dependence, so
health gets 18.27% speedup improvement.

The main data structure of program perimeter is four
fork tree, the program primarily contains loop structure,
rather than nonloop structure. The parallelism of program
mainly comes from the decomposition of function into
multithreading. Because it is difficult to predict the return
value of the function, the acceleration effect of these two
approaches are not good. Compared with HR-based partition
approach, TPAoPI selects the suitable partition scheme in
line with its own characteristics, and the partition scheme
is not affected by loops. The assessment models adopted by
nonloops are used to find the better thread partition boundary



Irregular

Programs

Solution Space

Procedure Call Tree

Importance Calculation

Optimal Partition Schemes

Search Mechanism

Leaf Nodes Find Their Best

Partition Schemes

Parents of Leaf Nodes Find

Their Best Partition Schemes

Root Node Finds the Optimal

Partition Scheme End

Find A Seldom Procedure s Optimal

Partition Scheme

Find A Seldom Procedure s Optimal

Partition Scheme Among the

Remaining Procedures
Different

Layer

Same

Layer

Find the Optimal Partition Scheme for

the Last Procedure

Figure 4. Flow of Procedures
′

Partition Schemes Generation

Figure 5. Comparison Diagram of Speedups for Olden Benchmarks

for the current program, so the final execution performance
improves 18.23%.

The main data structure in program bh is a heterogeneous
octree, which has very complex data dependence. Its paral-
lelisms exist in and out of loop structures. For the heuristic
rules, the same partition scheme is used to partition all the
procedures in the bh program, and for the TPAoPI, the
optimal partition scheme matching with the characteristic
of every procedure in the program can be selected, and then
the partition scheme is applied to the threads. However, due
to the existence of more dependence, TPAoPI gains 19.54%
performance improvement.

The main data structure of the program em3d is a single
linked list, in which the loop structure occupies most of
the total, and all the parallelism of program em3d comes
mainly from the loop structure. Although TPAoPI can obtain

the partition scheme suitable for its own characteristics, the
characteristic extraction of the loop is not enough. Finally,
compared with the HR-based partition approach, 13.17%
performance improvement is achieved.

The main data structure of the program bisort is two
fork tree. Through the analysis of the source code, we can
see that there are only three loops in the program, and
only two loops are executed, and the granularity of the
loop is relatively small. Then the parallelism of program
is mainly from the nonloops, although the program has a
certain number of data dependence, but mining the potential
parallelism from the application program can be performed
based on the TPAoPI in every procedure. TPAoPI selects the
suitable partition scheme for every procedure, finally obtains
27.47% performance improvement.

The main data structure of program treeadd is two fork



tree, which is a simple program structure. In this structure,
only four procedures are included, and the program does not
contain any loop structure, so the parallelism comes from
the nonloops. TPAoPI can select the appropriate partition
scheme for every procedure, but there are many recursive
function calls and data dependence in treeadd, and finally
the program achieves 21.19% performance improvement.

VII. CONCLUSION

Based on the Prophet system, this paper proposes a thread
partitioning approach based on procedure importance (T-
PAoPI), which starts with importance of procedures in irreg-
ular programs, adopting interdisciplinary research methods,
creatively introducing the theory of importance in reliability
theory, and calculates importance of procedures based on
the characteristics of procedures. On the basis of the initial
partition scheme, a manual intervention scheme suitable for
the procedure is developed according to the importance of
procedure, and a new performance evaluation model is used
to theoretically evaluate obtained speedups, so that the best
partitioning schemes of procedures are identified, exploring
the intrinsic law that characteristics of procedures influence
their best partitioning schemes. The paper does research
from three aspects: calculating importance of procedures,
generating the best partitioning schemes of procedures, and
building of performance evaluation.

VIII. ACKNOWLEDGEMENT

We thank all members of Henan Joint International
Research Laboratory of Cyberspace Security Applications
for their great support, and give our best hope to them
for their collaboration. We also thank reviewers for their
careful comments and suggestions. This work is supported
by National Natural Science Foundation of China Grant
No.61772174 and 61370220, and Plan For Scientific Innova-
tion Talent of Henan Province Grant No.174200510011, as
well as Program for Innovative Research Team (in Science
and Technology) in University of Henan Province Grant
No.15IRTSTHN010, and Open Foundation of State key
Laboratory of Networking and Switching Technology (Bei-
jing University of Posts and Telecommunications) SKLNST-
2018-1-09.

REFERENCES

[1] C. G. Quiones, C. Madriles, J. Sanchez, P. Marcuello, A. Gon-
zalez, and D. M. Tullsen, “Mitosis compiler: an infrastructure
for speculative threading based on pre-computation slices,” in
Acm Sigplan Conference on Programming Language Design
& Implementation, 2005.

[2] Y. Li, Y. Zhao, and Q. Wu, “A graph-based thread partition ap-
proach in speculative multithreading,” in IEEE International
Conference on High Performance Computing & Communica-
tions; IEEE International Conference on Smart City; IEEE
International Conference on Data Science & Systems, 2017.

[3] ——, “Gba: A graphbased thread partition approach in specu-
lative multithreading,” Concurrency & Computation Practice
& Experience, vol. 29, no. 21, p. e4294, 2017.

[4] T. A. Johnson, R. Eigenmann, and T. Vijaykumar, “Min-cut
program decomposition for thread-level speculation,” in ACM
Sigplan Notices, vol. 39, no. 6. ACM, 2004, pp. 59–70.

[5] A. Bhowmik and M. Franklin, “A general compiler frame-
work for speculative multithreading,” in Symposium on Par-
allelism in Algorithms & Architectures, 2002.

[6] Y. Li, P. Yin, and Y. Zhao, “Thread partitioning algorithm of
speculative multhreading based on fuzzy clusters,” Chinese
Journal of Computers, vol. 37, no. 3, pp. 580–592, 2014.

[7] B. Liu, Y. Zhao, X. Zhong, Z. Liang, and B. Feng, “A novel
thread partitioning approach based on machine learning for
speculative multithreading,” in High Performance Computing
and Communications & 2013 IEEE International Conference
on Embedded and Ubiquitous Computing (HPCC EUC),
2013 IEEE 10th International Conference on. IEEE, 2013,
pp. 826–836.

[8] Z. Wang and M. F. O’Boyle, “Partitioning streaming paral-
lelism for multi-cores: a machine learning based approach,” in
Proceedings of the 19th international conference on Parallel
architectures and compilation techniques. ACM, 2010, pp.
307–318.

[9] D. Lasalle, M. Mostofa, A. Patwary, N. Satish, N. Sundaram,
G. Karypis, and P. Dubey, “Improving graph partitioning for
modern graphs and architectures,” in Workshop on Irregular
Applications: Architectures & Algorithms, 2015.

[10] Y. Li, Y. Zhao, and J. Shi, “A hybrid samples generation
approach in speculative multithreading,” in High Performance
Computing and Communications; IEEE 14th International
Conference on Smart City; IEEE 2nd International Confer-
ence on Data Science and Systems (HPCC/SmartCity/DSS),
2016 IEEE 18th International Conference on. IEEE, 2016,
pp. 35–41.

[11] C. Madriles, C. Garcia-Quinones, J. Sanchez, P. Marcuello,
A. Gonzalez, D. M. Tullsen, H. Wang, and J. P. Shen, “Mito-
sis:a speculative multithreaded processor based on precompu-
tation slices,” IEEE Transactions on parallel and distributed
systems, vol. 19, no. 7, pp. 914–925, 2008.

[12] M. C. Carlisle, “Olden: parallelizing programs with dynamic
data structures on distributed-memory machines,” Ph.D. dis-
sertation, Princeton University, 1996.




