
Thread-Level Speculation:Review and Perspectives

Yuxiang Li

School of Information Engineering
Henan University of Science and Technology

Luoyang, China
liyuxiang@haust.edu.cn

Zhiyong Zhang

School of Information Engineering
Henan University of Science and Technology

Luoyang, China
xidianzzy@126.com

Lili Zhang

School of Information Engineering
Henan University of Science and Technology

Luoyang, China
lillyzh@126.com

Danmei Niu

School of Information Engineering
Henan University of Science and Technology

Luoyang, China
niudanmei@163.com

Abstract—Thread-Level Speculation (TLS) is an automatic
parallelization technique for serial programs on multi-core
platforms, and permits the generation of multiple threads
during compilations well as in run-time. The most obvious
difference between TLS and the conventional parallelization
model is that TLS can partition programs into multiple threads
to be speculatively executed in the presence of ambiguous
data and control dependences, while the correctness of the
programs is guaranteed by run-time system. As TLS (in
different ways) has become ubiquitous in today

′
s parallel

computing, it seems worthwhile to provide a review of TLS
that has evolved over the last few decades. We concentrate
on a comprehensive review of models with some practical
relevance together with a perspective on models with potential
future relevance. This review attempts to collect, organize, and
summarize the most representative publications in thread-level
speculation. In chronological order, TLS evolved from Hard-
ware Thread-Level Speculation (HTLS) to Software Thread-
Level Speculation (STLS), and to Algorithm Thread-Level
Speculation (ATLS). Moreover, a perspective is given to clarify
the future development of TLS. Aside from presenting the
models, we also refer to features, implementations, and tools.

Keywords-thread-level speculation; hardware thread-level
speculation; irregular programs; software thread-level spec-
ulation; algorithm thread-level speculation

I. INTRODUCTION

Irregular programs use dynamic structures such as trees,

lists and Directed Acyclic Graphs (DAGs) to solve science

problems and play an important role in complex network

analysis, machine learning, image processing, bioinformat-

ics analysis, climate simulation models, and so on. These

programs usually have complex control flow, irregular data

access pattern and own more potential parallelism. Because

the irregular programs have ambiguous control and data

dependences, it is difficult to find the common parallel

patterns, behaviors and semantics. As a result, they are hard

to be paralleled by the conventional approaches, such as

OpenMP [1], TBB [2], MPI [3] and CUDA [4]. At the

same time, as the rapid development of the semiconductor

technology in accordance with Moore
′
s Law, microprocessor

architecture has entered the multi-core era and multi-core

processors are now the mainstream processor architectures,

offering more computing and storage resources, increas-

ing communication bandwidth and reducing communication

delay. Dedicated server (e.g., the SGI Origin [5]) that

can simultaneously execute multiple parallel threads are

becoming increasingly commonplace on a wide variety of

scale, and even personal computers are often sold in two or

four processor configurations. Although hardware techniques

such as simultaneous multithreading [6](e.g., the Alpha) and

single-chip multiprocessing [7](e.g., the Intel Xeon, Core,

and AMD Athlon) have long been exploited to provide more

computing resources for parallel processing, the greatest

stumbling block in the exploitation of potential performance

of irregular programs is to use software techniques to auto-

matically divide the sequential programs into multithreads

which are executed in parallel and to eliminate control and

data dependences among the parallel threads.

TLS allows the compiler to automatically parallelize por-

tions of code in the presence of statically ambiguous data

dependences, thus extracting parallelism between whatever

dynamic dependences actually exist at run-time. To illustrate

how TLS operates, Figure 1 includes four cases. Figure 1(a)

shows the sequential execution, while Figure 1(b) shows

the speculative execution. Once the speculative execution

fails, the speculative thread will be re-executed after the

master thread, shown in Figure 1(c). When a Read-After-

Write (RAW) conflict occurs, the speculative thread will

rollback and again execute, as is exhibited in Figure 1(d).

II. GENERAL INTRODUCTION

A. General Introduction of Thread-Level Speculation

This section provides basic background materials on TLS

and defines some terms and describes how a TLS works,

1291

2018 5th International Conference on Information Science and Control Engineering

978-1-5386-5500-9/18/$31.00 ©2018 IEEE
DOI 10.1109/ICISCE.2018.00263

sp

cqip

(a)

Sequential execution tim
e

sp

cqip

cqip

success

Parallel execution tim
e

(b)

sp

cqip

cqip Parallel execution tim
e

failure

(c)

sp

cqip
cqip

Parallel execution tim
e

X

cqip

RAW

(d)

Figure 1: Thread-level speculative model

but is not a complete tutorial. Interested readers can consult

References [8], [9] for more detailed background informa-

tion on TLS.

TLS allows the compiler to automatically parallelize

general-purpose programs by supporting the parallel exe-

cution of threads that might not actually be independent

[10]. The considered issues in TLS include a thread partition

scheme as well as control and data dependence elimina-

tion. Regarding the partition scheme, TLS partitions serial

applications into multi-threads and speculatively executes

them on the multi-cores. Of all the threads, only one is

the primary thread, which has the ability to submit data,

while the others are speculative threads which can commit

data once being converted to be a primary thread. For thread

partition, the most widely used method is to insert Spawning

Point (SP) and Control Quasi Independent Point (CQIP) [11]

into serial programs to form various threads so to map them

to multi-cores. Control dependence happens when a prior

thread selects which thread will be speculative and which

path will be the mostly likely path for speculation.

B. Dataflow in Thread-Level Speculation

With the support of TLS, dataflow correlated techniques

have often been used to realize value prediction [12], branch

mis-prediction [13], synchronization and concurrency as

well as speculation [14], etc.

Reference [15] exploited the dataflow execution model for

a thread-level recovery scheme. The results showed that the

redundant execution of dataflow threads could efficiently use

underutilized resources in a multi-core. Reference [16] used

data-flow principles to realize a scalable thread scheduling

co-processor.

With respect to handling the issues of synchronization,

concurrency, and speculation, Reference [14] provided a

brief overview of dataflow including the concepts, lan-

guages, historical architecture, and recent architecture, and

indicated that dataflow had inherent advantages in concur-

rency, synchronization, and speculation over control flow or

imperative implementations.

C. Presentation of Early Thread-Level Speculation

Over the past decade, the frequency of commercial proces-

sors has no longer increased, but is still subject to Moore
′
s

Law due to the growing number of on-chip processor cores.

To handle this issue, TLS has rapidly developed as this

technique permits dependence between concurrent threads

to make the threads which are difficult to be parallelized

speculatively, so an increase of parallelism degree is ob-

tained

This kind of model is realized by hardware, and this model

permits threads with data dependence to run speculatively,

and uses value prediction to deal with the dependence, and

dynamically validates whether or not the predicted values

are in accordance with the actual values, if true, this model

will submit the results obtained by speculative execution;

otherwise speculative threads will be revoked and restarted

to ensure the right logic.

The TLS execution model based on hardware thread level

speculation(HTLS) is a chip multi-processor (CMP) [17]

technique, which converts the serial program to speculative

multi-threading programs with the assistance of compiler

technique (like pre-computing slice, pointer analysis, pro-

gram profiler, thread, etc.), and executes (including out-of-

order spawning, Multiversion Cache, RAW violation detec-

tion, submitting, and validation logic, etc.) on processors

with HTLS. This type of automatic parallelization has been

verified, and has very limited speedup performance and

scalability on account of it for being difficult to control mis-

speculation and other overheads.

III. CLASSIFICATION OF THREAD-LEVEL SPECULATION

The basic idea behind most TLS techniques is to make

full use of multi-core resources to realize the coarse-

grained parallelization of serial programs. We implemented

classification for TLS, and divided TLS into three types:

(1) Hardware Thread-Level Speculation (HTLS); (2) Soft-

ware Thread-Level Speculation (STLS); and (3) Algorithm

Thread-Level Speculation (ATLS). Furthermore, STLS can

also be classified into four aspects: (i) Explicit Speculative

Parallelization (ESP); (ii) Implicit Speculative Parallelization

1292

(ISP); (iii) Automatic Speculative Parallelization (ASP); and

(iv) Software Transactional Memory (STM).

IV. RECENT ADVANCEMENTS IN TLS

With the rapid development of thread-level speculation,

people are now focusing on machine learning-based thread

level speculation [8], [9], [18], and algorithm thread level

speculation (ATLS) [7], which are gradually becoming a

research point to obtain the parallelization effects in devel-

opment and usage with a more abstract level, and play a

fundamental role in overcoming difficulties in programming.

A. Machine Learning-based Thread-Level Speculation

1) Framework of Machine Learning-based Thread Level
Speculation: This subsection presents a framework of ma-

chine learning-based thread partition, that is illustrated in

Figure 2. The framework consists two phases, i.e., training

phase (located in the solid box) and validation phase (located

in dotted box). The core of framework is the setup of

K-Nearest Neighbor (KNN) prediction model (just as an

example) and application of it. During the training phase,

vector-based features are extracted from training programs

as input of KNN learning algorithm, to construct a prediction

model. During the validation phase, the already trained

prediction model is used to predict the partition schemes

for unknown programs. The training programs are different

from the final run programs used in validation phase. A cross

validation method [19] is used in the collection of hybrid

sample set [20] to generate the training sample set.

To predict an appropriate partition scheme for an unseen

program, machine learning-based thread level speculation

use one machine learning method-KNN to complete the

construction of a predictor, that can predict the partition

process of it. Once KNN prediction model is trained by

training data (programs), it can perform the partition predic-

tion for unknown programs. There are four key points for our

approach, including construction of sample set, extraction of

features, similarity calculation, prediction model, application

of prediction model.

The next critical step is to complete the similarity com-

parison between the features (present in the form of vectors)

generated from unseen program and the ones from training

programs. The comparison of them is a searching process

within the training samples
′

space. Once an unseen program

comes, the similarity between it and every training program

will be calculated to complete the achievement for the most

similar training sample.

B. Algorithm Thread Level Speculation

1) Descriptions of Algorithm Thread Level Speculation:
The reason why Algorithm Thread-Level Speculation (ATL-

S) has gradually become a future point is that many prob-

lems existing in irregular programs (shown in Artificial

Intelligence, computational biology, finite element analysis,

data mining, social network, simulations, N-body problems)

[21] still cannot be solved by conventional methods. As con-

ventional methods are seldom related to irregular algorithms,

they lack an awareness of parallelization and locality of ir-

regular programs. However, the existing awareness about the

biggest obstacle before irregular algorithms is the difficulty

in cleaning up all the ambiguous dependences. As seen in

Figure 3, the implementation framework primarily includes

two parts: the analysis model and analysis results.

The analysis model of ATLS includes three parts: the

algorithm paradigm, parameter model, and mapping scheme.

With the algorithm paradigm, ATLS is able to convert

different kinds of algorithms to a common paradigm, so

it is easy to deal with. Then, the metric parameters are

searched to build the metric model to evaluate the parallel

algorithms. Next, a mapping scheme was built so that

different algorithms could be mapped to a fixed model. Once

a model was analyzed, we put it into application, as is seen

in the lower part of Figure 3. Consequently, we used the

ATLS model to evaluate the speedups of the algorithms.

V. CONCLUSIONS

This paper reviewed the most representative publications

on thread-level speculation. The reviews classified the work

on this field into three categories: HTLS, STLS, and ATLS.

Some of the most important contributions in each of these

categories were analyzed to try to identify the issues that

affected the primary thought and characters of each class of

TLS.

The researches on TLS were done along time. As a

consequence, this review first focused on HTLS. The review

revealed that there were several fundamental questions that

still remained unanswered many years after they were first

identified. HTLS is very complex, and is associated with

many parameters including data and control dependence,

thread granularities, data correctness, etc. It appears that

the proper way to handle these issues in HTLS is to

design variable hardware mechanisms to answer one or more

questions.

We also reviewed publications on STLS and concluded

that high memory and mis-speculation overheads were still

the main barriers affecting STLS. It is particularly important

to consider the reduction of these overheads in light of the

current mechanism to realize the optimization of speculation.

As TLS is applied to larger and more difficult irregular

programs, it becomes necessary to design a much faster and

practical model that retains the capability of parallelizing

irregular programs. This review has presented a novel model

(ATLS) capable of realizing the thread-level parallelization

in the algorithm level, and a better understanding was

reached which should allow us to better utilize them in

future.

1293

New
Program

Prediction
Model

Partitioning
Scheme

Extract
Features

Hybrid
Sample set

KNN Learning
Algorithm

Thread
Partitioner

Threaded Assembly
Program

Preprocessing

Prophet
Simulator

Program Output

Simulator Output

Feature
Expressions

Training Phase Validation Phase Processing Phase

Figure 2: Overall designing framework of machine learning based thread partition

Algorithm Paradigm
-Step
-Template
-Semantic Rules

Parameter Model
-Scale Parameters
-Task Graph

Mapping Scheme
-Implementing Model
-Time and Space Graph
-Scheduling Methods

Analysis Model of ATLS

Algorithms Measurement Results
-Task Graph

Mapping Results
-Time and Space Graph

A
pp

li
ca

tio
n

Results
-Speedup

Analysis Results of ATLS

Figure 3: Implementation framework of algorithm thread-level speculation

VI. ACKNOWLEDGEMENT

We thank our 505 and 509 laboratory for their great

support during our work. We give our best hope to all

our colleagues of laboratory for their collaboration. We also

thank reviewers for their careful comments and suggestions.

This work is supported by National Natural Science Foun-

dation of China Grant No.61772174 and 61370220, and

Plan For Scientific Innovation Talent of Henan Province

Grant No.174200510011, as well as Program for Innovative

Research Team (in Science and Technology) in University

of Henan Province Grant No.15IRTSTHN010.

REFERENCES

[1] Sergio Aldea, Alvaro Estebanez, Diego R. Llanos, and Arturo
Gonzalez-Escribano. An openmp extension that supports
thread-level speculation. IEEE Transactions on Parallel
Distributed Systems, 27(1):78–91, 2016.

[2] Alexei Katranov and Alexey Kukanov. Intel; threading
building block (intel; tbb) flow graph as a software infras-
tructure layer for opencl-based computations. In International
Workshop on Opencl, page 9, 2016.

[3] James Dinan, Pavan Balaji, Darius Buntinas, David Goodell,
William Gropp, and Rajeev Thakur. An implementation
and evaluation of the mpi 3.0 one-sided communication
interface. Concurrency Computation Practice Experience,
28(17):4385–4404, 2016.

[4] Richard Gilbert and Srboljub Mijailovich. Distributed multi-
scale muscle simulation in a hybrid mpi-cuda computational
environment. Simulation, 92(1):19–31, 2016.

[5] James Laudon and Daniel Lenoski. The sgi origin: a ccnuma
highly scalable server. Acm Sigarch Computer Architecture
News, 25(2):241–251, 1997.

[6] Henry M. Levy, Susan J. Eggers, and Dean M. Tullsen. Si-

1294

multaneous multithreading: Maximizing on-chip parallelism.
23:392–403, 1995.

[7] Yaobin Wang, Hong An, Zhiqin Liu, Ling Li, and Jun Huang.
A flexible chip multiprocessor simulator dedicated for thread
level speculation. In Trustcom/bigdatase/i?spa, pages 2127–
2132, 2017.

[8] Yuxiang Li, Yinliang Zhao, and Qiangsheng Wu. A graph-
based thread partition approach in speculative multithreading.
In IEEE International Conference on High PERFORMANCE
Computing and Communications; IEEE International Confer-
ence on Smart City; IEEE International Conference on Data
Science and Systems, pages 406–413, 2017.

[9] Yuxiang Li, Yinliang Zhao, and Bin Liu. Qinling: A paramet-
ric model in speculative multithreading. Symmetry, 9(9):180,
2017.

[10] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry.
Improving value communication for thread-level speculation.
28:65–75, 2002.

[11] Carlos Garcı́a Quiñones, Carlos Madriles, Jesús Sánchez,
Pedro Marcuello, Antonio González, and Dean M Tullsen.
Mitosis compiler: an infrastructure for speculative threading
based on pre-computation slices. In ACM Sigplan Notices,
volume 40, pages 269–279. ACM, 2005.

[12] Arthur Perais and Andre Seznec. Bebop: A cost effective
predictor infrastructure for superscalar value prediction. In
IEEE International Symposium on High PERFORMANCE
Computer Architecture, pages 13–25, 2015.

[13] A Farcy, O Temam, R Espasa, and T Juan. Dataflow
analysis of branch mispredictions and its application to early
resolution of branch outcomes. In ACM/IEEE International
Symposium on Microarchitecture, 1998. Micro-31. Proceed-
ings, pages 59–68, 1998.

[14] Krishna Kavi, Charles Shelor, and Domenico Pace. Chapter
twoconcurrency, synchronization, and speculationthe dataflow
way. Advances in Computers, 96:47–104, 2015.

[15] Sebastian Weis, Arne Garbade, Bernhard Fechner, Avi
Mendelson, Roberto Giorgi, and Theo Ungerer. Architectural
support for fault tolerance in a teradevice dataflow system.
International Journal of Parallel Programming, 44(2):208–
232, 2016.

[16] R. Giorgi and A. Scionti. A scalable thread scheduling co-
processor based on data-flow principles. Future Generation
Computer Systems, 53(C):100–108, 2015.

[17] Lance Hammond, Benedict A Hubbert, Michael Siu,
Manohar K Prabhu, Michael Chen, and K Olukolun. The
stanford hydra cmp. IEEE micro, 20(2):71–84, 2000.

[18] Yuxiang Li, Yinliang Zhao, and Qiangsheng Wu. Gba: A
graphbased thread partition approach in speculative multi-
threading. Concurrency Computation Practice Experience,
29, 2017.

[19] Shuichi Shinmura. The 100-fold cross validation for small
sample method. DATA ANALYTICS 2016, page 41, 2016.

[20] Yuxiang Li, Yinliang Zhao, and Jiaqiang Shi. A hybrid
samples generation approach in speculative multithreading.
In High Performance Computing and Communications; IEEE
14th International Conference on Smart City; IEEE 2nd
International Conference on Data Science and Systems (HPC-
C/SmartCity/DSS), 2016 IEEE 18th International Conference
on, pages 35–41. IEEE, 2016.

[21] Xiaoqiang Li, Wenting Han, Gu Liu, Hong An, Mu Xu, Wei
Zhou, and Qi Li. A speculative hmmer search implementation
on gpu. In IEEE International Parallel and Distributed
Processing Symposium Workshops and Phd Forum, pages
735–741, 2012.

1295

