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Abstract
The strictly contractive Peaceman–Rachford splitting method (SC-PRSM) attracts
much attention on solving the separable convex programming. In this paper, the
SC-PRSM is first applied to recover the corrupted low rank matrix, which extends the
application of the SC-PRSM. At each iteration, we just solve two easy subproblems,
where one subproblem has a closed solution and another needs to solve linear
equations by the conjugate gradient method. Finally, numerical comparisons with
the existing types of the alternating direction method of multipliers show that the
SC-PRSM is efficient and competitive for recovering the low rank matrix problems.
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1 Introduction
Recovering a corrupted low rank matrix from a small amount of observations has attracted
a lot of attention in many applications, such as online recommendation system and collab-
orative filtering [1], the Joster joke data [2], DNA data [3] and the famous Netflix problem
[4]. This problem is the famous matrix completion (MC) problem, and its mathematical
formula can be expressed as

min
X∈Rm×n

‖X‖∗, s.t. Xi,j = Mi,j, i, j ∈ Ω , (1)

where Ω is a given set of the index pairs (i, j), ‖X‖∗ is the nuclear norm, which is defined
as the sum of its singular values. Assuming the matrix X has r positive singular values
of σ1 ≥ σ2 ≥ · · · ≥ σr > 0, we can get ‖X‖∗ =

∑r
i=1 σi(X). It is well known that the nuclear

norm is the best convex approximation of the rank function over the unit ball of matrices
with norm less than one [5]. Furthermore, a general form of the MC problem is nuclear
norm minimization with affine constraint, which can be depicted as

min
X∈Rm×n

‖X‖∗, s.t. A(X) = b, (2)
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where A : Rm×n → R
p is a linear map and b ∈ R

p is a given measurement vector. The b is
always contaminated by noise in practical applications, so the problem (2) can be relaxed
to the following regularized nuclear norm minimization problem:

min
X∈Rm×n

‖X‖∗ +
γ

2
∥
∥A(X) – b

∥
∥2

2, (3)

where γ is the regularization parameter, which balances the two terms for obtaining the
optimal solution.

Recently, many efficient algorithms could solve this problem (3), such as SDPT3 [6], sin-
gular value thresholding (SVT) [7], fixed point continuation with the approximate SVD
(FPCA) method [5], a proximal point algorithm [8], an accelerated proximal gradient
(APG) algorithm [9], the alternation direction method of multiplier (ADMM) type of al-
gorithms [10–12], etc. But to the best of our knowledge, there are few studies on the appli-
cation of SC-PRSM for recovering the corrupted low rank matrix problems. In this paper,
we are going to further study the SC-PRSM for the problem (3).

The strictly contractive Peaceman–Rachford splitting method (SC-PRSM) is proposed
in [13] by attaching an underdetermined relaxation factor α to the penalty parameter in
the steps of Lagrange multiplier updating, which guarantees the convergence of PRSM
proposed in [14] without some restrictive assumptions. It is worth mentioning that the
difference between the PRSM and the ADMM is the addition of the intermediate update
of the multipliers, which offers the same set of advantages for the two variable values.
Recently, the SC-PRSM is also widely applied in solving many valuable problems, which
can be referred to [15–18]. In this paper, we focus on applying the SC-PRSM to solve the
problem (3) based on the proposed method of IADM-CG [12]. Moreover, we give some
numerical comparisons to illustrate the advantage of the SC-PRSM for the problem (3).

The rest of this paper is organized as follows. In Sect. 2, we will give some preliminaries
for this paper. In Sect. 3, we will give the construction of SC-PRSM for the problem (3).
Some results of numerical experiments will be reported in Sect. 4. Finally, some conclu-
sions are given.

2 Preliminaries
In this section, we mainly review some preliminaries on the ADMM and the SC-PRSM
for further application of the SC-PRSM. Both of them are applied to solve the following
convex minimization model with linear constraints and a separable objective function:

min
{
θ1(x) + θ2(y) | Ax + By = b, x ∈X , y ∈ Y

}
, (4)

where A ∈ R
m×n1 , B ∈ R

m×n2 , b ∈ R
m, X ⊂ R

n1 and Y ⊂ R
n2 are closed convex sets, and

θ1(x) : X →R
m and θ2(y) : Y →R

m are convex functions.
The iterative scheme of ADMM [19, 20] for (4) reads

⎧
⎪⎪⎨

⎪⎪⎩

xk+1 = argmin{θ1(x) – (λk)T (Ax + Byk – b) + β

2 ‖Ax + Byk – b‖2, x ∈X },
yk+1 = argmin{θ2(y) – (λk)T (Axk+1 + By – b) + β

2 ‖Axk+1 + By – b‖2, y ∈ Y},
λk+1 = λk – β[Axk+1 + Byk+1 – b],

(5)
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where the λ is the Lagrangian multiplier associated with the linear constrains and the β > 0
is a penalty parameter. Moreover we note that the ADMM is viewed as an application of
the Douglas–Rachford splitting method to the dual problem of (4) as analyzed in [21], and
for its convergence performance one may be referred to [22, 23].

Applying the PRSM [24] to the dual problem of (4) [21], we can obtain the iterative
schemes as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xk+1 = argmin{θ1(x) – (λk)T (Ax + Byk – b) + β

2 ‖Ax + Byk – b‖2, x ∈X },
λk+ 1

2
= λk – β[Axk+1 + Byk – b],

yk+1 = argmin{θ2(y) – (λk+ 1
2

)T (Axk+1 + By – b) + β

2 ‖Axk+1 + By – b‖2, y ∈ Y},
λk+1 = λk+ 1

2
– β[Axk+1 + Byk+1 – b],

(6)

where updating the λk+ 1
2

is the only difference between the PRSM and the ADMM, which
makes the two variable values to be treated fairly. But the PRSM needs more restrictive
assumptions than ADMM to guarantee convergence [21]. The reader may refer to [24, 25]
for more numerical verifications of the PRSM.

In order to overcome the weakness of a strict contraction of PRSM’s iterative sequence,
He et al. [13] found that when an underdetermined relaxation factor α ∈ (0, 1) is attached
to the penalty parameter β in the steps of Lagrange multipliers updating in (6), the result-
ing sequence becomes strictly contractive with respect to the solution set of (4). And they
pointed out that the PRSM with an underdetermined relaxation factor can possibly estab-
lish a worst-case O(1/t) convergence rate in a nonergodic sence by the strict property. So
they named this method SC-PRSM in [13] and gave its iterative scheme for (4) as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xk+1 = argmin{θ1(x) – (λk)T (Ax + Byk – b) + β

2 ‖Ax + Byk – b‖2, x ∈X },
λk+ 1

2
= λk – αβ[Axk+1 + Byk – b],

yk+1 = argmin{θ2(y) – (λk+ 1
2

)T (Axk+1 + By – b) + β

2 ‖Axk+1 + By – b‖2, y ∈ Y},
λk+1 = λk+ 1

2
– αβ[Axk+1 + Byk+1 – b],

(7)

where α ∈ (0, 1). As showed in [13], the SC-PRSM ensures the sequence generated by (7)
to be strictly contractive with respect to the solution set of (4). And without any further
assumption on the model (4), they established worse-case O(1/t) convergence rates for
(7). Moreover, the applications of SC-PRSM in machine learning and image processing
illustrated that the SC-PRSM is numerically more efficient. Therefore, in this paper, we
will further study the SC-PRSM for recovering a corrupted low rank matrix.

3 Algorithm
In this section, we will give the processing of extending the SC-PRSM to the problem of
(3) based on the proposed the method of IADM-CG. Firstly, by introducing an auxiliary
variable Y , the problem of (3) can be translated into the following form:

min
X,Y

‖X‖∗ +
γ

2
∥
∥A(Y ) – b

∥
∥2

2, s.t. X = Y . (8)

Then its corresponding augmented Lagrangian function can be obtained as follows:

LA(X, Y , Z) = ‖X‖∗ +
γ

2
∥
∥A(Y ) – b

∥
∥2

2 – 〈Z, X – Y 〉 +
μ

2
‖X – Y‖2

F , (9)
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where Z ∈R
m×n is the Lagrangian multiplier, μ > 0 is the penalty parameter, 〈·〉 represents

the inner product of matrices or vectors.
Given {Xk , Yk , Zk}, applying the SC-PRSM for the problem of (8), we can obtain the fol-

lowing iteration equations:

Xk+1 = argmin
X

LA(X, Yk , Zk), (10)

Zk+ 1
2

= Zk – αμ(Xk+1 – Yk), (11)

Yk+1 = argmin
Y

LA(Xk+1, Y , Zk+ 1
2

), (12)

Zk+1 = Zk+ 1
2

– αμ(Xk+1 – Yk+1), (13)

where α ∈ (0, 1) is a relaxation factor. Observing the above iteration scheme, we can note
that the two subproblem with respect to X and Y are mainly needed to solve. And the
problem of minimizing X can be reformulated into

Xk+1 = argmin
X

‖X‖∗ – 〈Zk , X – Yk〉 +
μ

2
‖X – Yk‖2

F

= argmin
X

‖X‖∗ +
μ

2

∥
∥
∥
∥X –

(

Yk +
1
μ

Zk

)∥
∥
∥
∥

2

F
. (14)

Given the singular soft-thresholding operator proposed in [7], we can get

Xk+1 = S1/μ

(

Yk +
1
μ

Zk

)

. (15)

Given the Xk+1, we can update the Lagrangian multiplier Zk+ 1
2

by (11). Given {Xk+1, Zk+ 1
2
},

we will compute the iteration of Yk+1.
Firstly, we note the augmented Lagrangian function with respect to Y as Q(Y ), which is

expressed as

Q(Y ) = LA(Xk+1, Y , Zk+ 1
2

)

=
γ

2
∥
∥A(Y ) – b

∥
∥2

2 – 〈Zk+ 1
2

, Xk+1 – Y 〉 +
μ

2
‖Xk+1 – Y‖2

F .

It is not hard to see that the Q(Y ) is a convex quadratic function, its gradient is

G(Y ) = Zk+ 1
2

– μ(Xk+1 – Y ) + γA∗(A(Y ) – b
)
.

Let G(Y ) = 0, then we obtain

(
μI + γ

(
A∗A

))
Y = μXk+1 – Zk+ 1

2
+ γA∗b, (16)

so the Yk+1 can be expressed as

Yk+1 =
(
μI + γA∗A

)–1(
μXk+1 – Zk+ 1

2
+ γA∗b

)
, (17)
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where I is an identity matrix, and A∗ is the adjoint of A. It seems that the above linear
system is easy to solve, but it may be expensive to solve directly in practice when the scale
is large. Thus we consider applying the linear conjugate gradient method [12] for solving
it iteratively. Now we let C = μI + γA∗A, and Dk = μXk+1 – Zk+ 1

2
+ γA∗b. Let Ŷ0 = Y k ,

R̂0 = CŶ0 – Dk and P̂0 = –R̂0, and then the sequence {Ŷi} can be acquired iteratively as
follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

αi = – 〈̂Ri ,̂Pi〉
〈̂Pi ,CP̂i〉 ,

Ŷi+1 = Ŷi + αiP̂i,

R̂i+1 = CŶi+1 – Dk ,

βi+1 = 〈̂Ri+1,CP̂i〉
〈̂Pi ,CP̂i〉 ,

P̂i+1 = –R̂i+1 + βi+1P̂i,

(18)

and set Y k+1 = Ŷi. It is worth being mentioned that the linear conjugate gradient method
is very efficient to solve the linear system and has good convergence properties, for which
one may refer to [26].

In the last step, we update the Lagrangian multiplier Zk+1 by (13).
To sum up, the expending of PRSM for problem (3) has the same form for solving the

two subproblems of X and Y with IADM-CG. The one difference is the addition of the
intermediate update of the multipliers Zk+ 1

2
. The other difference is adding a relaxation

factor α ∈ (0, 1) to guarantee the convergence property of the SC-PRSM. Now we give the
iteration scheme of SC-PRSM for solving Eq. (3) as follows:

Initialization: Given Y0, Z0, ε > 0, γ > 0, μ > 0 and ī. Let C = μI + γ (A∗A), k = 0.
Step 1. Stop if some terminated condition is satisfied. Otherwise, continue.
Step 2. Compute Xk+1 via (15) with the given Yk and Zk .
Step 3. Compute Zk+ 1

2
via (11) with the given Xk+1, Yk and Zk .

Step 4. Given {Xk+1, Yk , Zk+ 1
2
}, let D = μXk+1 – Zk+ 1

2
+ γA∗b, update Yk+1 by (1)–(3).

(1) Let Ŷ0 = Yk , R̂0 = CŶ0 – Dk and P̂0 = –R̂0. Let i = 0;
(2) if R̂i > ε and i < ī are satisfied;
compute Ŷi by (18);
let i = i + 1;
(3) Let Yk+1 = Ŷi.
Step 5. Given Xk+1, Yk+1, Zk+ 1

2
, compute Zk+1 via (13).

Step 6. Let k = k + 1. Turn to Step 1.

Remark 1 In the above scheme, the constants of ε and ī are to guarantee the exactness of
Yk+1. Generally in numerical experiments, we set ε = 10–2 and ī = 5 to ensure the availabil-
ity of the proposed algorithm.

At the end of this section, we state the convergence of SC-PRSM without proof. One
should refer to [13] or [15] for more details.

Theorem 1 Let {(Xk , Y k , Zk)} be a sequence generated by SC-PRSM. The sequence
{(Xk , Y k , Zk)} converges to some {(X∗, Y ∗, Z∗)}.
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4 Numerical experiments
In this section, we will report some numerical results on the SC-PRSM for matrix nuclear
norm minimization problems, including the matrix complete problems and the regular-
ized least square nuclear norm minimization in the cases of containing noise and noise-
less. We firstly give the meanings of the different signal and the sets of parameters. The
quantities m and n represent the dimension of the matrix, and r is the rank of the ma-
trix. We denote by p the number of measurements. Given r ≤ min(m, n), we can generate
M = MLMT

R , where the matrices ML ∈ R
m×r and MR ∈ R

n×r are generated with indepen-
dent identically distributed Gaussian entries [12]. The subset Ω of p elements is selected
uniformly at random entries form {(i, j) : i = 1, . . . , m, j = 1, . . . , n}. And the partial discrete
cosine transform (DCT) matrix is chosen as the linear map A. Since the DCT matrix-
vector multiplication is implemented implicitly by FFT, this makes us test the numerical
experiments more efficiently [27]. We get the linear measurements b = A(M) +ω, where ω

is the additive Gaussian noise of zero mean and standard deviation σ , which will be varied
in different situations.

Now sr = p/(mn) represents the sampling ratio, and dr = r(m + n – r) is the number of
degrees of freedom for a real-valued rank r matrix. As mentioned in [28, 29], the problem
can be viewed as an easy problem when the ratio p/dr is greater than 3. On the contrary, it
is regarded as a hard problem. Another ratio FR = r(m + n – r)/p is also important for suc-
cessfully recovering the matrix M. If FR > 1, it is impossible to recover the matrix because
there is an infinite number of matrices X with rank r with the given entries [5]. There-
fore the FR varies in (0, 1) in this paper. In addition, we take μ = 2.5/ min(m, n), γ = 24 and
α = 0.5.

In all tests, the optimal solution produced by the proposed method is denoted X∗. The
relative error is used to measure the quality of X∗ to original M, i.e.

RelErr =
‖X∗ – M‖F

‖M‖F
. (19)

If the corresponding RelErr is less than 10–3, it can be seen that M is recovered successfully
by X∗, which has been used in [5, 7]. In all the tests, we take RelErr = 10–4 as the terminal
condition. In addition, we apply the same technique for solving the matrix singular value
decomposition (SVD) as in [10, 12, 27, 30]

All numerical experiments were performed under Windows 7 premium and MATLAB
v7.8(2009a) running on a Lenovo laptop with an Intel core CPU at 2.4 GHz and 2 GB
memory.

4.1 Tests on the nuclear norm minimization problems
In this subsection, we mainly solve the problem (3) in different cases to illustrate the effi-
ciency of the SC-PRSM.

In the first test, we mainly use the SC-PRSM for the problem (3) and report the nu-
merical results of the relative error and the estimated rank, which can be seen in Fig. 1.
Here we set m = n = 1000, r = 50, sr = 0.5. Observing Fig. 1, we can get close to the real
rank just in the third iteration, and the relative error reduces to the given measure with
less 20 iterations. So we can conclude that the SC-PRSM is efficient for the nuclear norm
minimization.



Jin et al. Journal of Inequalities and Applications        (2019) 2019:147 Page 7 of 12

Figure 1 The convergence result of SC-PRSM
(m = n = 1000, r = 50, sr = 0.5). The upper figure: the
estimation of rank. The lower figure: the relative
error between the optimal solution and the original
low rank matrix

Figure 2 SC-PRSM and IADM-CG for solving the
nuclear norm minimization (m = n = 500, r = 50,
sr = 0.5)

In the second experiment, we compare the SC-PRSM with the IADM-CG [12] for solv-
ing the problem (3). The numerical results can be seen in Fig. 2. In this test, we apply the
SC-PRSM and the IADM-CG [12] for solving the nuclear norm minimization problems in
the cases of m = n = 500, r = 50, sr = 0.5. Then we compare the efficiency of the above two
methods by displaying Fig. 2. From Fig. 2, we can see that the SC-PRSM needs less running
time than the IADM-CG, and the SC-PRSM can attain a better accuracy for the solution.
Thus we can see that the SC-PRSM needs to update the multiplier twice at each iteration,
but it improves the accuracy of the solution of each iteration produced by the primal algo-
rithm. Most of the running time is spent on solving the SVD decomposition of the matrix,
so the SC-PRSM shows some improvement but not too dramatic. In the next test, we com-
pare the SC-PRSM with the IADM-CG, IADM_BB [10] and IADM_NNLS [11] for solving
the nuclear norm minimization with different settings. The numerical results is displayed
in Table 1. Observing Table 1, we can see that the SC-PRSM and IADM-CG needs less
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Table 1 SC-PRSM, IADM-CG, IADM_BB, IADM_NNLS for solving the easy nuclear norm minimization,
m = n

SC-PRSM IADM-CG IADM_BB IADM_NNLS

(m, r) sr p/dr Time RelErr Time RelErr Time RelErr Time RelErr

(128, 3) 0.4 8.64 1.19 8.87e–4 10.28 1.54e–3 12.27 3.08e–3 0.28 9.29e–4
0.6 13.0 0.7 9.38e–4 0.76 9.45e–4 10.73 1.82e–3 0.28 7.73e–4
0.8 17.3 0.5 7.30e–4 0.53 6.59e–4 0.96 9.26e–4 11.22 1.00e+0

(256, 5) 0.4 10.3 7.02 9.93e–4 5.08 8.08e–4 51.93 1.42e–3 0.60 6.57e–4
0.6 15.5 3.05 7.66e–4 2.82 8.70e–4 5.67 8.39e–4 0.90 8.13e–4
0.8 20.7 1.9 6.69e–4 2.10 4.37e–4 4.27 7.47e–4 30.6 9.99e–1

(512, 10) 0.4 10.3 24.2 9.34e–4 26.70 6.14e–4 64.50 8.08e–4 2.84 9.49e–4
0.6 15.5 16.9 5.91e–4 17.93 8.60e–4 40.30 7.53e–4 3.68 6.79e–4
0.8 20.7 10.6 6.05e–4 11.05 9.28e–4 22.79 9.18e–4 133.14 9.97e–1

(1024, 20) 0.4 10.3 132.8 9.51e–4 138.19 8.48e–4 301.47 9.57e–4 18.30 7.86e–4
0.6 15.5 75.3 9.12e–4 79.50 8.66e–4 179.30 8.62e–4 17.01 8.48e–4
0.8 20.7 54.9 5.72e–4 55.26 9.27e–4 119.30 9.20e–4 728.88 9.98e–1

Table 2 SC-PRSM, IADM-CG, IADM_BB, IADM_NNLS for solving the hard nuclear norm minimization,
m = n

SC-PRSM IADM-CG IADM_BB IADM_NNLS

(m, r) sr p/dr Time RelErr Time RelErr Time RelErr Time RelErr

(100, 10) 0.5 2.63 6.7 2.29e–3 7.75 2.29e–3 8.45 4.55e–3 14.52 1.10e–1
(200, 20) 0.5 2.63 4.8 9.70e–4 25.39 1.03e–3 30.27 2.05e–3 19.77 2.61e–2
(300, 30) 0.5 2.63 8.9 7.60e–4 8.99 9.28e–4 75.19 1.36e–3 47.95 1.62e–2
(400, 40) 0.5 2.63 14.6 8.38e–4 17.04 8.93e–4 64.25 9.99e–4 95.31 5.07e–3
(500, 50) 0.5 2.63 22.9 9.43e–4 30.00 8.11e–4 62.22 9.96e–4 58.31 9.96e–4

computing time than the IADM_BB for getting the same accuracy of the solution. Com-
paring SC-PRSM with IADM_NNLS, we can note that SC-PRSM needs more running
time but it can solve the case of the sr = 0.8 successfully. However, the IADM_NNLS can-
not attain a high accuracy of the solution within the given largest iteration steps. So in
some sense, the SC-PRSM is more efficient.

In the fourth test, we compare SC-PRSM with IADM-CG, IADM_BB and IADM_NNLS
for solving the hard problem of the nuclear norm minimization. From Table 2, it is easy
to see that the SC-PRSM is more efficient than the IADM_NNLS and IADM_BB in the
aspects of running time and accuracy of solution. And the SC-PRSM needs a little bit
less running time than IADM-CG for getting a similar accuracy of solution. By the above
limited numerical tests, it is illustrated that the SC-PRSM is promising and efficient for
solving the hard problems of nuclear norm minimization.

In the last numerical test of this subsection, we apply the SC-PRSM for solving the
nuclear norm minimization with different level noise. We set m = n = 200 and σ =
10–1, 10–2, 10–4, respectively. It can be observed from Fig. 3 that the SC-PRSM can deal
with the nuclear norm minimization problem with σ = 0.1 successfully. As is well known,
as the level of noise is lower, the problem can be solved more easily. When the σ is 10–4,
the accuracy of solution can attain 10–4. Therefore, this numerical test illustrated that the
SC-PRSM is efficient for solving the low rank minimization problem with Gaussian noise.



Jin et al. Journal of Inequalities and Applications        (2019) 2019:147 Page 9 of 12

Figure 3 SC-PRSM for the nuclear norm
minimization with noise (m = n = 200, r = 5, sr = 0.5),
σ is 1e–1, 1e–2, 1e–4, respectively

Table 3 SC-PRSM, IADM-CG, IADM_BB and IADM_NNLS for solving the matrix completion problems,
m = n, sr = 0.5

SC-PRSM IADM-CG IADM_BB IADM_NNLS

(m, r) p/dr Time RelErr Time RelErr Time RelErr Time RelErr

(500, 5) 25.13 4.40 8.83e–4 4.82 3.92e–4 9.15 9.13e–4 0.38 6.06e–4
(500, 10) 12.63 5.00 8.72e–4 5.15 9.95e–4 7.51 9.12e–4 0.52 5.71e–4
(500, 15) 8.46 4.80 9.28e–4 5.12 9.93e–4 7.74 9.08e–4 0.70 5.11e–4
(500, 20) 6.38 5.19 7.12e–4 5.60 9.12e–4 8.25 9.29e–4 0.82 7.24e–4
(500, 25) 5.13 5.12 7.70e–4 5.89 1.00e–3 9.40 9.01e–4 1.37 6.45e–4
(500, 30) 4.30 6.75 8.46e–4 8.72 8.63e–4 12.24 8.67e–4 1.66 9.76e–4
(500, 35) 3.70 7.40 9.06e–4 8.56 8.16e–4 11.83 9.53e–4 2.66 8.95e–4
(500, 40) 3.26 8.10 9.89e–4 11.65 8.00e–4 15.04 9.72e–4 3.74 9.12e–4
(500, 45) 2.91 8.60 8.42e–4 11.59 9.69e–4 15.78 9.47e–4 7.24 9.66e–4
(500, 50) 2.632 11.16 9.52e–4 13.35 9.75e–4 18.17 9.89e–4 17.21 9.91e–4

4.2 Tests on the matrix completion problems
In this subsection, we will apply the SC-PRSM for solving the matrix completion prob-
lems and further verify the proposed method. The matrix completion problem can be
reformulated as follows:

min
X∈Rm×n

‖X‖∗ +
γ

2
∑

(i,j)∈Ω

|Xi,j – Mi,j|2, ∀(i, j) ∈ Ω . (20)

Firstly, we use the SC-PRSM, IADM_NNLS, IADM_BB and IADM-CG to solve the low
rank matrix completion problems in the noiseless case. In this test, when tol reaches 1e–3,
the SC-PRSM, IADM-CG and IADM_BB are terminated. For IADM_NNLS, all parame-
ters are by default expected to have opts.tol_relchg = 1e–3.

Observing Table 3, the SC-PRSM is better than the IADM-CG and IADM_BB on the
aspects of running time and accuracy of solution, but it needs more running time than
IADM_NNLS. From the end line of Table 3, we can see that the SC-PRSM is more efficient
than others for solving the hard problems. Thus we can conclude that the SC-PRSM is
more efficient than IADM-CG and IADM_BB and comparable with IADM_NNLS by the
limited tests.

In the last test, the numerical results are shown in Fig. 4. We apply the SC-PRSM for
recovering the corrupted images, where the dimension of “boat” and “pentagon” is 512 ×
512 and 450×450, respectively. Firstly, we deal with the original image (a) by singular value
decomposition to get a low rank image (b), where the rank is 40. And then we choose 50%

elements of the known observations to obtain the corrupted image (c). Finally, we use the
SC-PRSM to recover (c) and get a completed low rank image (d). Comparing (b) with (d),
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Figure 4 (a) Original image; (b) low rank image with r = 40; (c) the corrupted image with sr = 50%; (d) the
recovered image by SC-PRSM

we can find that the SC-PRSM can recover the corrupted low rank image successfully,
which further illustrates its practicability.

5 Conclusions
In this paper, we mainly devoted our attention to proposing a SC-PRSM method based
on the IADM-CG for solving the nuclear norm minimization problem, which expanded
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the SC-PRSM to recover the corrupted low rank matrix. The classical ADMM is to solve
the X-subproblem and Y -subproblem orderly and then to update the Lagrange multi-
plier. However, the SC-PRSM updates once the Lagrange multiplier after computing the
X-subproblem and Y -subproblem, respectively. We introduce the relax factor α into the
computing of the Lagrange multiplier for improving the convergence efficiency of the pro-
posed method. Numerical results illustrated that the SC-PRSM can solve the nuclear norm
minimization problems successfully. The last real test on recovering the corrupted low
rank images further demonstrated the efficiency and practicability of SC-PRSM.
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