
An Adaptive Thread Partitioning Approach in
Speculative Multithreading

Yuxiang Li1,2[0000−0002−3758−7162], Zhiyong Zhang1,2,4, and Bin Liu3

1 Henan University of Science and Technology, Henan 471023, China
2 Henan International Joint Laboratory of Cyberspace Security Applications, Henan,

471023, China xidianzzy@126.com

http://www.sigdrm.org/~zzhang/
3 Northwest Agriculture & Forestry University, Yangling, 471023, China

liubin0929@nwsuaf.edu.cn

4

Abstract. Thread partition is a core part of Speculative Multithread-
ing (SpMT) technique. The existing thread partition approaches mostly
adopt one unique thread partitioning scheme for unknown programs, re-
sulting in high misspeculation ratio, restricting the programs

′
speedup

improvement due to inappropriate partitioning schemes. This paper which
introduces an adaptive thread partition approach (AdapTPA), takes the
relationship between program complexity and thread partitioning scheme
as the research entry point, and uses the irregular programs as the re-
search carrier, and utilizes formal analysis, probability statistics, math-
ematical modeling and simulation experiments to reveal the rule that
program

′
s characteristics affect speedup performance, and generates a

compound thread partitioning scheme for one program, and selects and
executes the most suitable thread partitioning scheme according to the
runtime context and the program

′
s complexity, so to achieve the ex-

pected maximum speedups. With the method of path statistics on one
program

′
s control flow graph, the program

′
s complexity calculation mod-

el is set up; A candidate thread partitioning scheme set is constructed on
the foundation of classical thread partitioning approaches; Using expert
knowledge to guide production rules, a scheme selection mechanism that
complies with program complexity is explored. Compared to the heuris-
tic rules-based (HR-based) thread partitioning method, the experiment
results show that AdapTPA delivers an average 18.24% performance im-
provement.

Keywords: thread partition approach· Speculative Multithreading· ex-
pert knowledge

4 Contact Email:xidianzzy@126.com

http://www.sigdrm.org/~zzhang/

2 Y. Li et al.

1 Introduction

Thread-Level Speculation (TLS), which is a speculative multi-threading tech-
nique [1, 2], allows data execution between concurrent units to be aggressively
executed in parallel, overcoming the weakness that the traditional paralleliza-
tion methods cannot effectively eliminate thread-level fuzzy dependence. Thread
partitioning is a key step in TLS, as it takes charge of the insertion of thread par-
titioning statements. It is the core of programs

′
speculative parallelization, which

directly affects the speedup performance [3]. Therefore, the research on thread
partitioning approach is urgent. The existing thread partition methods mainly
include: thread partition method based on heuristic rules [4] and thread partition
methods based on machine learning [5], and et al [6–10]. The former determines
the granularity of threads generated after the program is partitioned, the data
dependency between threads, and the spawning distance according to heuristic
rules, so as to determine the partition flags ((spawning point, sp) and (control
quasi-independent point, cqip)); The latter uses machine learning to learn the
knowledge of thread partition in the sample set, and predicts its partition scheme
based on the characteristics of the new input program. However,these two types
of thread partition methods consider one program as a partition unit. A unified
thread partition scheme is used for the procedure in the program. The lack of
a personalized thread partition scheme for the procedures in the program re-
sults in the incomplete parallelism of some procedures in the program, resulting
that the performance of the program after parallelization can not be maximized.
Therefore, it is of great significance to carry out thread partition with the pro-
cedures in the program as the object, which can overcome the shortcomings of
traditional thread partition methods.

Based on the previous work, this paper intends to use an adaptive mechanism
to adaptively select the most suitable thread partitioning scheme based on the
program features and context, which can ensure the maximum performance of
the serialization program after parallelization, and can provide a new method
for multi-core processor design.

The remaining parts of this paper are organized as follows. In section 2, we
first briefly present the motivation of AdapTPA; Section 3 presents the overall
framework of AdapTPA; Implementation of AdaTPA is shown in section 4; Sec-
tion 5 presents experiment and analysis; Section 6 shows conclusion and future
work; Section 7 shows acknowledgement.

2 Motivation of AdapTPA

This paper brings an adaptive mechanism, proposing an adaptive thread partition
ing approach(AdapTPA) for irregular programs, aiming at achieving the overall
research goal of maximizing the speedup performance, and providing the pos-

An Adaptive Thread Partitioning Approach in Speculative Multithreading 3

sibility for the wide application and healthy development of emerging parallel
technologies.

3 Overall Framework

The research framework to be adopted is shown in Fig.1. The research frame-
work regards the irregular serial program as the input, and establishes the pro-
gram complexity calculation model, the generation of candidate thread partition
scheme, and the expert knowledge-based partition scheme selection as the main
research points, and selects the most suitable thread partitioning scheme to per-
form the thread partition. The results are run on Prophet simulator to obtain
speedups and programs

′
results.

Irregular Programs

Irregular Serial

Programs

Formal Expression

 CFG

 SCFG

 WCFG

Graph Expression

Candidate Partition

Schemes

Complexity Model

Program Complexity

Suitable Partition

Scheme

Thread Partition

Prophet Simulator

Program Output Speedup

Selection

of

Partition

Schemes

Generation

of

Candidate

Partition

Schemes

Building

of

Complexi

ty Model

Fact

Base

Rule

Base

Mapping

Library

Knowledge

Set

Scheme

Selection

Fig. 1. Overall Research Framework. The framework includes three main part-
s:generation of candidate partition schemes, building of complexity model, and selection
of partition schemes

4 Y. Li et al.

3.1 Feature Extraction

Conventionally, compiler researchers have used fixed-length representations of
the program

′
s source code features or intermediate representations [11]. They

are extracted from programs and collected during compilation time. Afterwards,
we apply graph-based features to build WCFG for GbA. The feature graphs
are generated from profiling pass, which extracts static and dynamic features.
Figure 4 gives a simple description of feature extraction. The input programs are
Olden benchmarks [12]. Thread granularity, load balance, data dependence, and
control dependence are the main influence factors on program speedup. Hence,
we take dynamic instruction number, DDD, DDC, loop branch probability, and
critical path into account and regard them as program features. The specific
features and descriptions are given in Table 1.

Table 1. Extracted Features and Descriptions

Features Descriptions

Instruction Number Actual number of instructions in a basic block

DDC Data dependence count between two basic blocks

DDD Data dependence distance between two basic blocks

Loop branch Probability Probability for loop to jump to testing part of code

Branch Probability Probability for control flow to pass through a branch

3.2 Knowledge Expression

A

B

C

GD E

F

H

A

B

C

GD E

F

H

1.0

0.8 0.2

1.0

1.0

1.0

0.6

0.4

A

B

GI

H

1.0

0.8 0.2

.

(a) (b) (c)

1.0

1.0 1.0

fuse(C,D,F,E)

Fig. 2. Transformation from CFG (a) to WCFG (b), and Finally to SCFG (c)

Deriving from the same input, train set and validation set are divided. First-
ly, we use partition compiler (in the Prophet) to generate control flow graph
(CFG) after an intermediate pass. Then, profiled feature information generated

An Adaptive Thread Partitioning Approach in Speculative Multithreading 5

by profiling model are annotated to the CFG with a structural analysis method,
so to generate WCFG. The weights of each edge are denoted with the relative
branch probabilities. Then, a structural analysis traverses the CFGs of programs
to WCFGs and also identifies loop regions. Then, the loop regions are induced
into a super node with one entry and one exit node and WCFG traverses to super
control flow graph (SCFG), where loop region is represented as an abstract node.
Each node in the SCFG is either basic block or super basic block, which repre-
sents loop region. Fig.2(a) shows a CFG. After structural analysis as well as loop
region induction, basic blocks:C, D, F and E in the dashed box of Fig.2(b) are
induced into a super basic block I (shown in Fig.2(c)). AdapTPA represents the

Table 2. Heuristic Rules for Thread Partition

1.SP can appear anywhere in programs and behind a function call instruction as far
as possible. In non-loop region, CQIP is located in the beginning of a basic block.
CQIP is located in front of loop branch instructions in the last basic block
in loop regions.

2.SP-CQIP pairs are located within the same loop or function. The number of dynamic
instructions from SP to CQIP is between THREAD LOWER LIMIT and
THREAD UPPER LIMIT.

3.Between two successive candidate threads, spawning distance is bigger than minimum
DIS LOWER LIMIT.

4.Data dependence between two consecutive candidate threads is less than threshold
DEP THRESHOLD.

5.Between SP and CQIP, the number of function call instructions is less than the
threshold CALL LOWER.

desired thread partition scheme with a vector H =[H1, H2, H3, H4, H5] and the
sample partition scheme with hi=[hi1, hi2, hi3, hi4, hi5](i∈N),which all include
five thresholds: the upper limit of thread granularity (ULoTG), the lower limit
of thread granularity (LLoTG), data dependence count (DDC), the upper limit
of spawning distance (ULoSD), and lower limit of spawning distance (LLoSD).
As these five parameters determine the effectiveness of thread partition, and the
partition scheme is represented by [ULoTG, LLoTG, DDC,ULoSD, LLoSD]. For
example, one partition scheme could be [50, 10, 18, 30, 20]. These values indicate
that during thread partition thread granularity is set from 10 to 50, and data
dependence count is less than 18, and spawning distance ranges from 20 to 30.

A novel research result is successful construction of samples [13]. Based on
generated samples, we obtain the partition scheme hi(i∈N) of every sample
by means of mathematical statistics. Although we use a graph to denote every
sample, the node in the graph is represented by the first part of T={X, H }, where
X represents program features, and H denotes the optimal partition scheme,

6 Y. Li et al.

which are composed by five partition thresholds, namely ULoTG, LLoTG, DDC,
ULoSD, LLoSD.

4 Implementation of AdapTPA

4.1 Building of Complexity Calculation Model

There are many program features that affect thread partitioning, such as data
dependency, control dependency, number of branches, number of basic blocks,
number of average dynamic instructions, nesting level of loop structure, number
of procedure calls, and so on. The values of these features reflect the complexity
of the program. Most of the existing thread partitioning methods can not fully
consider the influence of program complexity on thread partitioning. Only the
program features are selected as the input of the thread partitioning method. It
is easy to cause the program features selected by different thread partitioning
methods to be inconsistent, and the generated thread partitioning scheme is not
accurate enough.

In the proposed program
′
s complexity calculation model, the formal expres-

sion is firstly constructed, and the CFG diagram of the program is constructed
with the basic block as the analysis unit. The feature values obtained by the
program analysis are added to the CFG diagrams in the form of annotations
to form the weighted control flow (WCFG); based on probability statistics and
graph traversal, the complexity (sub-complexity) of possible paths on WCFG
is calculated; finally, the overall complexity of the program is obtained by in-
tegrating sub-complexities. Fig.3 shows the flow chart for program complexity
calculation, and Table 3 shows the pseudocode of complexity calculation.

In Fig.3, P represents the input irregular serial program, G(P) stands for
WCFG, F1∼Fn (n∈N) stand for program features, and f1()∼fn() (n∈N) stand
for transfer function, Comp1()∼Compn() (n∈N) represent the complexity of
each path, and Comp represents the total complexity of P. In the model, first,
the unknown program P is formalized and converted into WCFG, i.e. G(P);
Secondly, feature extraction is performed on each possible path (from the head
node to the tail node) in G(P) respectively, using F1∼Fn (n∈N); Thirdly, using
the conversion function f1()∼fn()(n∈N) to achieve the mapping of eigenvalues
to complexity, for example, the complexity of basic blocks x is 0.01×x, the com-
plexity of loops y is 0.2×y, etc; then, the complexity Comp1()∼Compn() of each
path in G(P) is calculated separately; Finally, for each path, the complexity is
summarized to get the complexity of the program P.

4.2 Building of Candidate Thread Partition Scheme Set

The candidate thread partitioning scheme set is constructed with the method of
fusing program context and program features. Firstly, the initial candidate set

An Adaptive Thread Partitioning Approach in Speculative Multithreading 7

G(P)P

F1

F2

F3

Fn

F1

F2

F3

Fn

f1()

f2()

f3()

fn()

∑
1(f1(),f2(),..,fn())

f2()

f3()

fn()

f1() ∑
n(f1(),f2(),..,fn())

∑
(∑

1,∑
2,..,∑

n)

Comp

P1

Pn

Fig. 3. Flow Diagram of Complexity Calculation.The graph P is firstly represented by
G(P), the the complexity of different part of P is separately calculated, then aggregated
into Comp

Table 3. Computation of Complexity

Input: irregular program P

Output: Complexity of program P

G(P) = formalize(P);

Extract and express the characteristics of program
′
s the ith possible path (possibility

Pi in Fig.4) with F1∼Fn;
Set f1()∼fn() to be n transfer functions;
Set W1∼Wn to be n weight parameters for F1∼Fn;
Use function Sub complexity(f1,f2,f3,...,fn) to compute the complexity of every
possible path;
According to every Sub complexity, compute the final complexity computation with
function Comp = Complexity(Sub complexity1,Sub complexity2,...,Sub complexityn);

is constructed based on the program features. Based on this, the program con-
text parameter values are used to filter the initial candidate thread partitioning
scheme set, so to generate the final scheme set. Fig.4 shows the construction
process of the candidate thread partitioning scheme set.

In Fig.4, P stands for an irregular serial program, F1∼Fn stand for pro-
gram feature, Formal(P) stands for formal expression of P, M1∼Mn(n∈N) s-
tand for n classical thread partitioning approaches, and Schem1∼Schemn s-
tand for n thread partitioning schemes. The number of thread partition method
is set as follows:HR-based thread partition method (M1) is numbered 1, ML-
based thread partition method (M2) is numbered 2, and the critical path-based
thread partition method(M3) is numbered 3, the full path-based thread parti-
tion method (M4) is numbered 4, the hybrid thread partition method (M5) is
numbered 5, and so on. The path numbers are set as follows:the critical path
number is numbered 1, and the other non-critical path numbers are 2∼n. The
thread partition scheme consists of five main parameters:number of thread par-

8 Y. Li et al.

P

M1

M2

M3

Mn

F1

F2

F3

Fn

F
o
rm

a
l(P

)

Schem1

Schem2

Schem3

Schemn

Schem1'

Schem2'

Schem3'

Schemn'

1 2 3, , ,... n   

Fig. 4. Flow Diagram of Building Candidate Thread Partition Scheme Set. The graphs
of input programs are firstly formalized, then generated into different partition schemes

tition method, path number and thread partition algorithm (the five parameters
are: Upper Limit of Spawning Distance (ULoSD), Lower Limit of Spawning
Distance, (LLoSD), Data Dependence Count (DDC), Upper Limit of Thread
Granularity (ULoTG), and Lower Limit of Thread Granularity (LLoTG)). By
introducing the context parameter δ1∼δn(n∈N), the thread partitioning method
in this topic is context-aware, and the candidate thread partitioning scheme set
can also capture the change of the program state.

4.3 Construction of Thread Partitioning Scheme Selection
Mechanism in line with Program Complexity

After calculating the program complexity and constructing the candidate thread
partitioning scheme set respectively in the technical routes (1) and (2), based
on the expert knowledge, the mapping rule set of scheme selection of ”program
complexity->thread partitioning scheme” is established; according to mapping
rule and program complexity, execution context, the most suitable thread par-
titioning scheme in the candidate set is selected. Fig.5 shows the flow chart of
thread partitioning scheme selection.

Rule sets are used to store expert knowledge for reasoning. In the rule set,
the expert knowledge of the thread partitioning scheme selection mechanism is
represented by a production rule (also called a mapping rule). The production
rule divides the knowledge representation into two parts: premise and conclu-
sion. The general form of expert knowledge production rule representation is IF
<condition>, THEN <conclusion>, for example:

1. IF <Comp∈[0.8,1.0]>, THEN <select Schem1
′
>;

2. IF <Comp∈[0.6,0.8)>, THEN <select Schem2
′
>;

An Adaptive Thread Partitioning Approach in Speculative Multithreading 9

Programs’ Characteristics

Complexity

Calculation Model

Complexity

Phase of Complexity Calculation

Rule Set

Candidate Partition Scheme Set

Irregular Serial Programs

Phase of Partition Scheme Selection

 Adaptive Selection

Expert Knowledge Base

Partition Scheme

Is Partition Scheme Rational?

 Yes

 No

Fig. 5. Flow Graph of Thread Partition Scheme Selection.The complexity of input
program is firstly calculated, then partition schemes are generated by using expert
knowledge

3. IF <Comp∈[0.4,0.6)>, THEN <select Schem3
′
>;

4. IF <Comp∈[0.2,0.4)>, THEN <select Schem4
′
>;

5. IF <Comp∈[0.0,0.2)>, THEN <select Schem5
′
>;

where, Schem1
′∼Schem5

′
is a partitioning scheme selected by the candidate

thread partitioning scheme generated by the technical route (2), which is deter-
mined by the complexity and rules of the program. Some examples of generating
mapping rules are given above.

5 Experiment and Analysis

In this section, the experimental setup is introduced, to provide details of the
Prophet simulator as well as used benchmarks during the evaluation. In the last,
we present the results

′
analysis and discussions.

5.1 Configuration of Experiment

We perform the implementation of the execution model as well as thread par-
tition algorithm on the platform: Prophet (its module chart is shown in Fig.6),
which is based on SUIF/MACHSUIF [14]. At the level of SUIF

′
s intermediate

representation (IR), we complete the compiler analysis. The profiling information

10 Y. Li et al.

is produced from SUIF-IR in the form of annotation by profiler of Prophet. The
SUIF programs which are interpreted and executed by profiler provide informa-
tion, including dynamic instruction number, prediction of control flow path, and
prediction of data values. The Prophet simulator can simulate 1∼64 pipelined
mips-based R3000 processing elements (PE) and we run ProCAT with 4 PEs
or 8 PEs. This simulating process is an execution-driven simulation, which per-
forms the execution of binaries generated by Prophet compiler. Every PE fetches
and executes instructions from one thread, and orderly issues 4 instructions per
cycle. Every PE owns a private multiversioned L1 cache, which has latency of
2 cycles. Speculative results of PEs are buffered and cache communication is
performed via multiversioned L1 caches. With a snoopy bus, a write-back L2
cache is shared by the 8 PEs. The parameter configuration of simulator is shown
in Table 4.

Programs
SUIF

IR

Threaded

Program

MIPS

Program

Profile

Information

SUIF

IR
Repeated Estimation

Threaded

Program

Fig. 6. Module Chart of Prophet. Programs are firstly transformed into MIPS codes,
then partitioned into threaded programs, then run on Prophet simulator

Olden benchmarks [15] and SPEC2000 [16] are used to evaluate ProCTA. As
a popular benchmarks of studying irregular programs, Olden benchmarks process
complex control flows, pointer-intensive, as well as irregular data structures. The
benchmarks own dynamic structures, e.g., trees, lists, and DAGs, et al, which
are all difficult to get parallelized using conventional approaches.

AdapTPA makes use of one leave-one-out cross-validation method to perform
its results

′
evaluation. It means that the program which is to be partitioned is

firstly moved from training set, and based on the left programs a prediction mod-
el is built. The method has an advantage that the prediction model never sees
the programs to be partitioned before. The partition schemes for the left pro-
grams are built by applying the prediction model. Every program is performed
with this process in turn.

The paper uses multi-version caches to solve memory dependence and uses
register files to solve register data dependence.

An Adaptive Thread Partitioning Approach in Speculative Multithreading 11

Table 4. Configuration of Prophet Simulation (Per PE)

Parameters of Configuration Value

Function Units 4 int ALU (1 cycle)
4 int Mult/Div (3/12 Cycles)
4 fp ALU (2 Cycles)
4 fp Mult/Div (4/12 Cycles)

Spec. Buffer Size Fully Associative 2KB (1 Cycle)
Bandwidth for Fetch,In-order Issue 4 Instructions
and Commit Pipeline Stages Fetch/Issue/Ex/WB/Commit
Architectural Registers 32 int and 32 fp
L1-Cache(Multiversioned) 4-Way Associative 64KB (32B/Block)

Hit Latency 2
LRU Replacement

L2-Cache 4-Way Associative 2MB (64B/block)
5 hit latency, 80 cycles(miss)
LRU replacement

Spawn Overhead 5 Cycles
Validation Overhead 15 Cycles
Local Register 1 Cycle
Commit Overhead 5 Cycles

k 5
Similarity Threshold 0.5

5.2 Experimental Configuration

In order to show the effectiveness of AdapTPA, this paper makes a comparison
between AdapTPA and HR-based thread partition. Olden benchmarks [17] which
have complex data dependence and control dependence among basic blocks, are
selected as the inputting programs. When we analyze the experimental results,
we only compare the performance of the original HR-based thread partition
approach and AdapTPA, and then we will analyze the experimental results, in
which we only select several program analysis in the Olden benchmarks.

The main data structure in program bh is a heterogeneous octree, which has
very complex data dependence. Its parallelisms exist in and out of loop struc-
tures. For the heuristic rules, the same partition scheme is used to partition all
the procedures in the bh program, and for the AdapTPA, the optimal partition
scheme matching with the characteristic of every procedure in the program can
be selected, and then the partition scheme is applied to the threads. However,
due to the existence of more dependence, AdapTPA gains 19.54% performance
improvement.

The main data structure of the program em3d is a single linked list, in which
the loop structure occupies most of the total, and all the parallelism of program
em3d comes mainly from the loop structure. Although AdapTPA can obtain the
partition scheme suitable for its own characteristics, the characteristic extrac-

12 Y. Li et al.

0

0.5

1

1.5

2

2.5

3

3.5

bh em3d health perimeter voronoi treeadd power tsp mst bisort Mean

HR-based

AdapTPA

Olden benchmark

S
pe

ed
up

s

Fig. 7. Comparison Diagram of Speedups for Olden Benchmarks

tion of the loop is not enough. Finally, compared with the HR-based partition
approach, 13.17% performance improvement is achieved.

The main data structure of the program health is a two-way linked list, which
contains both loop and nonloop structure. In health, the loop structure is the
main source of parallelism, and compared with the HR-based partition approach,
you can obtain the partition scheme of health suitable for its characteristics.
During the partition of loop partition, although the loops occupy most of the
program, it has a large loop body and simple data dependence, so health gets
18.27% speedup improvement.

The main data structure of program perimeter is four fork tree, the program
primarily contains loop structure, rather than nonloop structure. The paral-
lelism of program mainly comes from the decomposition of function into multi-
threading. Because it is difficult to predict the return value of the function, the
acceleration effect of these two approaches are not good. Compared with HR-
based partition approach, AdapTPA selects the suitable partition scheme in line
with its own characteristics, and the partition scheme is not affected by loops.
The assessment models adopted by nonloops are used to find the better thread
partition boundary for the current program, so the final execution performance
improves 18.23%.

The main data structure of program treeadd is two fork tree, which is a simple
program structure. In this structure, only four procedures are included, and the
program does not contain any loop structure, so the parallelism comes from
the nonloops. AdapTPA can select the appropriate partition scheme for every

An Adaptive Thread Partitioning Approach in Speculative Multithreading 13

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

6

5

4

3

2

Olden and SPEC benchmark

Sp
e

e
d

u
p

 o
ve

ro
n

e
 P

E

#PEs

Fig. 8. Speedup Comparison Diagram of Olden and SPEC2000 Benchmarks over Dif-
ferent PEs

procedure, but there are many recursive function calls and data dependence in
treeadd, and finally the program achieves 21.19% performance improvement.

The main data structure of the program bisort is two fork tree. Through the
analysis of the source code, we can see that there are only three loops in the
program, and only two loops are executed, and the granularity of the loop is
relatively small. Then the parallelism of program is mainly from the nonloops,
although the program has a certain number of data dependence, but mining
the potential parallelism from the application program can be performed based
on the AdapTPA in every procedure. AdapTPA selects the suitable partition
scheme for every procedure, finally obtains 27.47% performance improvement.

Fig.7 shows the speedup comparisons between HR-based and AdapTPA. Seen
from Fig.7, the speedups obtained by AdapTPA in Olden benchmarks have a cer-
tain improvement than the speedups gotten by using HR-based thread partition
approach. However, different programs have obvious differences in the speedup
improvement. Overall, the HR-based approach obtains an average speedup of
1.725, while AdapTPA gets an average speedup of 2.040, so the average speedup
improves by 18.24%, indicating that AdapTPA has a good effect on the program
partition. Fig.8 shows the speedups of some SPEC2000 and Olden benchmarks
on different number of cores.

6 Conclusion and Future Work

Based on the Prophet system, this paper proposes an Adaptive Thread Partition
Approach (AdapTPA), and brings an adaption mechanism into thread partition.
According to programs

′
characteristics, the complexity of unknown program is

calculated, candidate thread partition scheme set is built, and the most suit-
able partition scheme is selected in accordance with programs

′
characteristics

14 Y. Li et al.

and running context. Finally, the program is executed on the Prophet simulator
to verify its execution performance. Thread Level Speculation has been evolv-
ing many years, showing great advantages in making use of multicore resources.
AdapTPA is proposed to handle the issue that conventional partitioning ap-
proaches can not generate the best partitioning scheme for unknown programs.
The trend of adaptive thread partition falls on two parts:1.more detailed can-
didate thread partitioning schemes are designed; 2.adaptive thread partition is
implemented on hardwares.

7 Acknowledgement

We thank all members of Henan Joint International Research Laboratory of
Cyberspace Security Applications for their great support, and give our best
hope to them for their collaboration. We also thank reviewers for their care-
ful comments and suggestions. The work was sponsored by National Natural
Science Foundation of China Grant No.61972133,Project of Leading Talents
in Science and Technology Innovation for Thousands of People Plan in Henan
Province Grant No.204200510021, Henan Province Key Scientific and Technolog-
ical Projects Grant No.192102210130 and No.202102210162, and Key Scientific
Research Projects of Henan Province Universities Grant No.19B520008.

Bibliography

[1] A. Estebanez, D. R. Llanos, and A. Gonzalez-Escribano, “A survey on
thread-level speculation techniques,” ACM Computing Surveys (CSUR),
vol. 49, no. 2, p. 22, 2016.

[2] C. Hammacher, K. Streit, A. Zeller, and S. Hack, “Thread-level speculation
with kernel support,” 2016.

[3] L. I. Yu-Xiang, Y. L. Zhao?, B. Liu, and J. I. Shuo, “Optimization of thread
partitioning parameters in speculative multithreading based on artificial im-
mune algorithm,” Frontiers of Information Technology & Electronic Engi-
neering, vol. 16, no. 3, pp. 205–216, 2015.

[4] C. Madriles, C. Garcia-Quinones, J. Sanchez, P. Marcuello, A. Gonzalez,
D. M. Tullsen, H. Wang, and J. P. Shen, “Mitosis:a speculative multi-
threaded processor based on precomputation slices,” IEEE Transactions
on parallel and distributed systems, vol. 19, no. 7, pp. 914–925, 2008.

[5] Y. Li, Y. Zhao, and Q. Wu, “Gba: A graphbased thread partition approach
in speculative multithreading,” Concurrency & Computation Practice &
Experience, vol. 29, no. 21, p. e4294, 2017.

[6] M. Qiu and E. H. M. Sha, “Cost minimization while satisfying hard/soft
timing constraints for heterogeneous embedded systems,” ACM Transac-
tions on Design Automation of Electronic Systems, vol. 14, no. 2, p. 25,
2009.

[7] M. Qiu, W. Dai, and A. V. Vasilakos, “Loop parallelism maximization for
multimedia data processing in mobile vehicular clouds,” IEEE Transactions
on Cloud Computing, vol. 7, no. 1, pp. 250–258, 2019.

[8] H. Qiu, H. Noura, M. Qiu, Z. Ming, and G. Memmi, “A user-centric data
protection method for cloud storage based on invertible dwt,” IEEE Trans-
actions on Cloud Computing, pp. 1–1, 2019.

[9] J. Li, Z. Ming, M. Qiu, G. Quan, X. Qin, and T. Chen, “Resource allocation
robustness in multi-core embedded systems with inaccurate information,”
Journal of Systems Architecture, vol. 57, no. 9, pp. 840–849, 2011.

[10] M. Qiu, Z. Chen, J. Niu, Z. Zong, G. Quan, X. Qin, and L. T. Yang, “Data
allocation for hybrid memory with genetic algorithm,” IEEE Transactions
on Emerging Topics in Computing, vol. 3, no. 4, pp. 544–555, 2015.

[11] A. Monsifrot, F. Bodin, and R. Quiniou, “A machine learning approach
to automatic production of compiler heuristics,” in International Confer-
ence on Artificial Intelligence: Methodology, Systems, and Applications.
Springer, 2002, pp. 41–50.

[12] B. Olden, “benchmark suite v,” 2010.
[13] Y. Li, Y. Zhao, L. Sun, and M. Shen, “A hybrid sample generation approach

in speculative multithreading,” Journal of Supercomputing, no. 3, pp. 1–33,
2017.

[14] R. P. Wilson, R. S. French, C. S. Wilson, S. P. Amarasinghe, J. M. Anderson,
S. W. Tjiang, S.-W. Liao, C.-W. Tseng, M. W. Hall, M. S. Lam et al., “Suif:

16 Y. Li et al.

An infrastructure for research on parallelizing and optimizing compilers,”
ACM Sigplan Notices, vol. 29, no. 12, pp. 31–37, 1994.

[15] A. Rogers, M. C. Carlisle, J. H. Reppy, and L. J. Hendren, “Supporting
dynamic data structures on distributed-memory machines,” ACM Transac-
tions on Programming Languages and Systems (TOPLAS), vol. 17, no. 2,
pp. 233–263, 1995.

[16] M. K. Prabhu and K. Olukotun, “Exposing speculative thread parallelism
in spec2000,” in Proceedings of the tenth ACM SIGPLAN symposium on
Principles and practice of parallel programming. ACM, 2005, pp. 142–152.

[17] M. C. Carlisle, “Olden: parallelizing programs with dynamic data structures
on distributed-memory machines,” Ph.D. dissertation, Princeton University,
1996.

	An Adaptive Thread Partitioning Approach in Speculative Multithreading

