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ABSTRACT

Industrial internet security incidents occur frequently, and it is very important to accurately and 
effectively detect industrial internet attacks. In this paper, a novel CNN-LSTM fusion model-based 
method is proposed to detect malicious behavior under industrial internet security. Firstly, the data 
distribution is analyzed with the help of kernel density estimation, and the Pearson correlation 
coefficient is used to select the strong correlation feature as the model input. The one-dimensional 
convolutional neural network and the long short-term memory network respectively extract the spatial 
sequence features of the data and then use the softmax function to complete the classification task. 
In order to verify the effectiveness of the model, it is evaluated on the NSL-KDD dataset and the 
GAS dataset, and experiments show that the model has a significant performance improvement over 
a single model. In the detection of industrial network traffic data, the accuracy rate of 97.09% and 
the recall rate of 90.84% are achieved.
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Industrial Intrusion Detection, Kernel Density Estimation, Long Short-Term Memory Network, One-Dimensional 
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INTRODUCTION

The rapid development and improvement of the consumer Internet has made people begin to explore 
and practice the “industrial Internet.” From a macroperspective, the industrial Internet connects 
industrial control systems (ICSs) and the Internet with the aim of making production more intelligent. 
On the microlevel, the industrial Internet abandons the traditional closed and trusted environment in 
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industrial control, integrates the exchange characteristics of the Internet, and connects the equipment, 
workshops, factories, employees, and customers in the industrial system using the Internet as a hub 
to connect the network (Alanazi et al., 2022). It promotes the intelligentization of the industry and 
realizes the interindustry intercommunication and the sharing of resources. However, as the industrial 
Internet continues to grow, it also comes with more security concerns. Over the past few years, the 
number of cyber attacks on the industrial manufacturing industry also increased significantly, compared 
with the past (Gauthama Raman & Mathur, 2022). A cyber attack on an industrial system may cause 
data leakage, system damage, production interruption of industrial enterprises, and even the closure 
and bankruptcy of enterprises, causing harm to the national social economy (Anthi et al., 2021).

According to the security status of the industrial Internet, the traditional intrusion detection 
system cannot effectively deal with most intrusions. Traditional intrusion detection mainly uses 
pattern matching and different protocol analysis techniques for detection (Gupta et al., 2009; Mishra 
et al., 2011). By establishing normal behavior patterns or modeling known attacks as the detection 
benchmark, this method is too dependent on the integrity of the modeling and must be accompanied 
by high rate of false positives. The industrial Internet, which links the conventional ICS to the Internet, 
confronts not only the security concerns of the old ICS, but also the inherent security challenges 
of the Internet (Chhetri et al., 2018). The cross-border integration of information technology and 
operation technology blurs the border between the security of industrial manufacturing and the 
security of the external Internet (Kou et al., 2022). In addition, and traditional detection methods are 
no longer suitable for detecting the current industrial Internet. The rise in popularity of deep learning 
has had far-reaching effects on fields such as voice and picture recognition, as well as introducing 
novel concepts to fields such as intrusion detection (Abu-Khzam et al., 2022; Malik et el., 2022). 
Applying deep learning to the field of intrusion detection can not only improve the detection rate, 
but also further simplify the problem of intrusion detection (Sayour et al., 2022).

Most of the traditional intrusion detection methods based on machine learning algorithms only 
use a single algorithm for classification and recognition, without performing feature processing on 
the data, which is relatively sluggish, the detection rate is not high, and it cannot accurately respond 
to the detection of intrusion behavior (Zhang et al., 2021). In order to achieve accurate and rapid 
detection of industrial Internet intrusion, it is necessary to respond to security risks and threats from 
both ICS and ordinary Internet. In this study, the authors selected two datasets, namely NSL-KDD 
(Tavallaee et al., 2009) and Gas pipeline datasets (Morris et al., 2015), which contain a large number 
of different attack types. At the same time, this approach is convenient, accurate, and fast to detect 
attack behaviors, remove irrelevant features in different datasets, and better improve the classification 
performance. The authors designed an intrusion detection classification model based on neural network 
(CNN)-long short-term memory (LSTM). The main contributions are as follows:

1. 	 Analyzing the original dataset, using one-hot encoding, standardization, and normalization for 
preprocessing, using the kernel density estimation (KDE) map to compare the data distribution, 
and using the Pearson correlation coefficient for feature selection to improve the accuracy of 
model recognition.

2. 	 Designing a model for classification evaluation and comparative analysis of intrusion detection 
attacks. The test results showed that the model has better performance than the reference model.

3. 	 Verifying the effectiveness and generalization of the evaluation method for intrusion detection 
classification on the intrusion detection dataset and the industrial control dataset.

RELATED WORK

The industrial Internet network traffic data are complex and changeable, and the feature redundancy is 
high, which makes security breaches difficult to detect. With the addition of deep learning, detecting 
these security issues has become easier and more efficient (Hammad et al., 2021; Helwan et al., 2021).
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Al-Abassi et al. (2020) proposed an intrusion detection method based on deep neural network and 
decision tree. Firstly, Al-Abassi et al. Extracted a new balanced representation from the unbalanced 
original data through multiple sparse autoencoders, and then passed to the deep neural network and 
decision tree for classification and detection. Validated on the real SCADA (i.e., supervisory control 
and data acquisition) dataset, the results showed that the combined architecture can handle complex 
data samples with mixed features and has high detection accuracy.

Li et al. (2019) proposed a detection model using multi-CNN fusion model, using prior information 
or clustering algorithms to cluster features, considering the correlation between features. The 
1-dimensional data are converted into 2-dimensional, and the blank is filled with zeros; multiple CNN 
models are trained with the clustered data, there is no output layer, and then the multiple models are 
fused. Li et al. verified the model on the NSL-KDD dataset and achieved good experimental results.

Ren et al. (2022) calculated the Pearson correlation coefficient, and compared the correlation 
of different features according to the coefficient to filter features. By setting different correlation 
thresholds and comparing the impact on detection results under different threshold strengths, they 
found the optimal thresholds and classified and detected them under different learning models. They 
used the UNSW-NB15 and CSE-CIC-IDS2018 datasets for experimental verification, and concluded 
that the feature selection by the Pearson correlation coefficient can significantly improve the model 
accuracy.

Kravchik and Shabtai (2021) used one-dimensional CNN, shallow variational auto-encoders 
(VAEs),, and principal components analysis to detect ICS data and apply them to the time domain 
and frequency domain of the data, showing the effectiveness in the frequency domain and excellent 
performance on the SWaT, BATADAL, and WADI datasets.

In most of the above studies, various learning models did not make full use of binary and 
multiclassification experimental verification. In addition, there is no sufficient verification, the 
experimental dataset is single, and there is no generalization consideration. In this study, by calculating 
the Pearson correlation coefficient, selecting appropriate features, and performing classification 
experiments by combining different machine learning and deep learning models, the authors carried 
out a detailed analysis of the industrial Internet intrusion detection

PROPOSED APPROACH

In this section, the authors introduce the data preprocessing method, present the design of the attack 
detection experiment, and describe the evaluation metrics.

Data Preprocessing
Original data often have problems such as redundancy, loss, and sample imbalance, so corresponding 
processing is required, that is, data preprocessing. In this study, the authors selected the NSL-KDD 
dataset and the Gas pipeline dataset (Morris et al., 2015). The NSL-KDD is optimized on the basis 
of KDD-99, contains more comprehensive network attacks than KDD-99, and is more suitable for 
testing model performance. The Gas pipeline is more representative of industrial control datasets. 
Tables 1 and 2 show the sample labels. Among them, the Gas pipeline dataset (Morris et al., 2015) is 
the second iteration of the dataset for natural gas pipeline systems. Compared with the first iteration 
of the Gas pipeline dataset (Morris et al., 2014), the authors excluded the obvious patterns contained 
in the first iteration. The pattern of the model will lead to a significant correlation between specific 
parameters and the results predicted by the algorithm, making it unsuitable for IDS research. In this 
study, the authors used the second iteration of the Gas pipeline dataset (Morris et al., 2015). All the 
data the researchers used in this work are available on the ICS Cyber Attack Datasets’s Web site 
(https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets?pli=1) and the Canadian Institute 
for Cybersecurity’s Web site (https://www.unb.ca/cic/datasets/nsl.html).

https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets?pli=1
https://www.unb.ca/cic/datasets/nsl.html
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Data Normalization
First, it is necessary to normalize the data type. Each intrusion detection dataset has many feature 
attributes, such as basic features, content features, and time features, and the data representations may 
be of different types. The normalization of data types is about unifying different data types into the 
same digital identifier, eliminating the difference in characteristic attributes caused by different data 
types, and facilitating subsequent calculations. Then, the researcher performs numerical normalization. 
It is necessary to select min-max normalization to scale the data uniformly in the range [0, 1]. The 
dimension of the data is to be planned in a unified manner, so that the value of each characteristic 
attribute is kept at the same order of magnitude. The min-max formula is as follows:

x
x x

x xnorm
=

−

−
min

max min
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One-Hot Encoding
The researcher converts the label to a vector of 0s and 1s. For features with many label categories, 
one-hot encoding is not suitable. One-hot encoding will produce a vector with as many dimensions 
as the amount of categories of labels. The more categories, the higher the dimension and the sparser 
the result, which is more prone to parallelism and multicollinearity problems. Thus, it also faces the 
risk that it may become a sparse matrix. Before performing one-hot encoding on the dataset, it is 
necessary to calculate the Pearson correlation coefficient and complete the feature screening to reduce 
the feature dimension (Ren et al., 2022) and, at the same time, avoid the above risks.

Visualization of Sample Distribution
The researcher analyzes the data by visualizing the sample distribution. For prediction and 
classification research, one of the most important factors affecting test results is the distribution of 
training and test sets. Inconsistent data distribution will most likely lead to model overfitting (García 
et al., 2012). In this research, the authors chose KDE. The kernel function creates an independent 
probability density curve for each sample value and then sums these smooth curves to obtain a smooth 
continuous probability distribution curve. By drawing the KDE map and comparing the distribution 
of the training set and the test set, it is smoother than the histogram and is less affected by the bin 
width. Also, the dataset is balanced according to the distribution map, so that the sample distributions 
are more similar, which facilitates the fitting of the model. The KDE function and kernel function 
calculation formula are as follows:
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f represents the overall probability density function, h is a hyperparameter, called bandwidth or 
window, n represents the total number of samples, and K represents the kernel function. The authors 
used the Gaussian kernel function, so K represents the Gaussian kernel function.
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The above preprocessing is to make the input data homogeneous and eliminate heterogeneous 
data, making the network easier to learn and converge.

According to Ren et al. (2022), when the threshold of Pearson coefficient is selected as 0.2, the 
comprehensive effect of classification is optimal. In order to ensure that enough features for learning 
are available, the authors selected features with a Pearson correlation coefficient greater than or equal 
to 0.1 when performing feature selection on the data. The Pearson correlation coefficient is often 
used to describe the strength of the correlation between variables. It does not change due to changes 
in scale or location between variables, and it has high computational efficiency, which is excellent 
when dealing with large-scale data. The measurement interval of the Pearson correlation coefficient 
is [-1, 1], which also allows the Pearson correlation coefficient to represent rich relationships. The 
closer the result value is to 1, the stronger the positive correlation between the variables; the closer the 
result value to -1, the stronger negative correlation between the variables; the closer the result value 
to 0, the weaker the correlation. Therefore, the researcher should select positively correlated features 
that have a strong impact on classification in the data. Among them, Figure 1 shows the heatmaps of 
the data correlation of each variable in the KDD datasets. Taking KDD as an example, the authors 
retained character features such as “protocol_type,” “service,” and “flag.” Among numerical features, 
they screened out features with a correlation coefficient value less than 0.1. Table 3 shows the partial 
correlation coefficient values of the KDD dataset.

After the feature selection of the Pearson correlation coefficient, the authors used the KDE of 
the kernel function to visualize the data distribution; the kernel function is a Gaussian function. In 
order to avoid artificial design during the reconstruction process, they selected a random seed. First, 
they integrated the data, and then randomly scrambled it given a random seed 42. Subsequently, they 
divided according to the original training-test ratio 8/2 and then visualized the KDE distribution. 
The data distribution after division is approximately balanced and the training and test data do not 

Table 1. Samples label of the KDD dataset

Label Name Label Value

DOS 0

Normal 1

Probing 2

R2L 3

U2R 4

Table 2. Samples label of the gas pipeline dataset

Label Name Label Value

Normal 0

NMRI 1

CMRI 2

MSCI 3

MPCI 4

MFCI 5

DoS 6

Reconnaissance 7
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overlap. Figure 2 illustrates the sample distribution diagram. Among them, 0 to 4 represent different 
peaks, namely sample categories Dos, normal, probe, R2L, U2R. The higher the peak, the denser the 
data. Tables 4 and 5 show the KDD datasets before and after data preprocessing.

Table 3. Partial correlation coefficient values for the KDD dataset

Feature Name Correlation Coefficient Value

duration 0.113273

src_bytes 0.011125

dst_bytes 0.006922

land -0.01149

wrong_fragment -0.08755

urgent 0.029384

hot 0.103386

num_failed_logins 0.153461

logged_in 0.283995

… …

Figure 1. Heatmap of the KDD
Note. The color of the blocks represents the strength of correlation. The darker the color, the weaker 
the correlation, and the lighter the color, the stronger the correlation.
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Classification Model
The authors compared various models in machine learning and deep learning, selected a model 
with a strong Pearson correlation coefficient for fitting training and compared the outcome. The 
experimental comparison model in this study mainly includes multilayer perceptron (MLP), random 
forest, and naive Bayes. In the machine learning model, the MLP consists of stacked multilayer, 
dense layers or multilayer linear layers. The expectation is output by transferring the data in the 
hidden layer and using a nonlinear excitation function. Random forest belongs to the parallelization 
method in the ensemble method. Its base learner is a decision tree, which is composed of multiple 
subtrees (submodels) that are independent and independent of each other, and the subtrees perform 
random sampling with replacement on the given dataset. The joint analysis operation of naïve Bayes 

Figure 2. Estimation diagram of unbalanced (on the left) and approximate balanced (on the right) KDD kernel density
Note. The peak value represents density

Table 4. Unpreprocessed KDD dataset

Type Train Test

Normal 65536 9711

DOS 45921 7458

Probing 11656 2421

R2L 995 2421

U2R 52 533

Table 5. Preprocessed KDD dataset

Type Train Test

Normal 65416 11638

DOS 45921 8149

Probing 11912 2165

R2L 2914 502

U2R 496 89
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mainly emphasizes its conditional independence, that is, the classification based on Bayes’ theorem 
under conditional independence. The learning strategy of the support vector machine (SVM) is to 
maximize the interval, that is, to find the separation hyperplane with the largest geometric interval, 
so as to realize the efficient classification of data.

The CNN-LSTM Model
The Convolutional Neural Network
A CNN is a feedforward neural network which is widely used for image recognition (Al Sobbahi & 
Tekli, 2022; Chui et al., 2022). The main application principle of a CNN is to use its local sensitivity 
and direction selection characteristics to avoid complex preprocessing of data and reduce complexity 
(Islam et al., 2020). CNNs can be divided into three layers: Convolutional, pooling, and fully connected, 
for feature extraction, down-sampling, and classification, respectively (Hassan et al., 2020). The 
convolutional layer is the main component of a CNN; ith extracts feature information by applying 
filters to the feature map from the previous layer (Zhang et al., 2018). The pooling layer reduces the 
amount of parameters by down-sampling a given dimension, usually selecting the largest value, in 
order to achieve spatial invariance. Finally, the fully connected layer makes a decision based on the 
features obtained by the above two layers.

The Long Short-Term Memory Network
The LSTM alleviates the short-term delay memory problem of the recurrent neural network (RNN), 
and has the ability to learn and save data information longer. The core part of the LSTM is the cell 
state. The cell state corresponding to time t is Ct. The cell state runs through all moments. During 
forward propagation, gates are used to control the increase or decrease of information in Ct. The 
gate in the LSTM is implemented by a neural network layer with activation function sigmoid, and 
the output value of the gate is between 0-1. Then, it is necessary to multiply the value vector of the 
gate and the target data bit by bit to achieve the effect of controlling the data flow. The mathematical 
formulas of the LSTM are as follows:
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it, ft, and ot represent the input gate, forget gate, and output gate, respectively. W represents the weight 
matrix, b represents the bias vector, ct represents the current storage unit state, and ht represents the 
current hidden state. Each gate uses the sigmoid activation function, and the state and output use 
the hyperbolic tangent function as activation function. These two functions are saturation functions, 
which are convenient for realizing the gating effect.

The CNN-LSTM Model
The model the authors propose in this paper includes CNN and LSTM. The main model of the CNN 
is to preform convolution pooling operation on the input data, and then enter the fully connected layer 
to complete the classification. This architecture makes it highly translation invariant, and the RNN has 
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an excellent effect on the prediction of sequence data, so, in this study, the authors chose the variation 
of the RNN- LSTM to capture longer distance dependencies of features. The structure level is:

conv1D maxpooling×2→flatten→fullConnection→LSTM→softmax→output
First, the authors used the local feature extraction of the CNN to learn more comprehensively the 

data features, and then they used the sensitivity of the LSTM to the order of data features to deal with 
its influence. The very purpose of using the fusion learning method was to improve the performance of 
the model through the complementarity of different learning methods (Alghamdi & Bellaiche, 2023). 
Figure 3 presents the flowchart of the proposed model and Figure 4 represents the algorithm model.

Evaluation Index
The authors used the confusion matrix and its derived indicators to evaluate the performance. A 
confusion matrix is a summary of the prediction results for a classification problem. By summarizing 
the number of actual categories and classification categories, it is easy to understand the defects of 
the model prediction and the categories in which errors occurred. Table 6 gives the definition of the 
confusion matrix and Table 7 presents the evaluation of the classification models.

EXPERIMENTS

Experimental Environment
In this study, the experimental test environment was Windows 10 PC, Intel(R) Core (TM) i5-7300HQ 
CPU @ 2.50GHz, 8.00GB RAM. The authors implemented the algorithms using Sklearn, keras, and 
tensorflow libraries in the Python language.

Model Parameters
The previous section provided the overall architecture of the model. The authors chose leaky_relu 
as the activation function in the network. In order to avoid model overfitting, they added a dropout 
layer. The dropout layer would randomly drop neurons, get rid of the dependencies between neurons, 
and improve the generalization performance. The authors opted for the leaky_relu function for the 
activation function because this function not only avoids gradient disappearance and prevents gradient 
saturation, but it also does not cause the problem of gradient disappearance, does not cause the 
permanent death of neurons due to the negative value of the weight parameter, and does not involve 
complex exponential calculations and operations. The expression of this method high efficiency and 
fast convergence speed. The expression is as follows,, and a is in the (0,1) interval:

f x ax x( ) = ( )max , 	 (10)

As the bottom layer of CNN-LSTM, the LSTM mainly stores the timing information of the 
main features of intrusion data extracted by the CNN. The activation function also uses leaky_relu.

Figure 3. Flowchart of the proposed IDS
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Figure 4. Algorithm model diagram: Network layer and its input and output

Table 6. The confusion matrix

Actual/Predicted True Positive True Negative

Hypothesized positive TP FP

Hypothesized negative FN TN

Note. TP = true positive; FP = false positive; FN = false negative; TN = true negative.
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Experimental Results
Ablation Experiment
In order to prove the rationality and validity of the model, the authors performed an ablation experiment 
on the model before the comparative experiment. The ablation experiment is effective for almost any 
research goal in the field of deep learning. It explains the performance impact of model “ablation” 
or “melting” more intuitively by replacing or deleting different modules. Ablation experiments are 
in principle similar to control variables in physics. The ablation experiments in this study allowed 
to compare the proposed CNN-LSTM network model with a local algorithm CNN network and a 
two-layer LSTM network. The selected experimental dataset was NSL-KDD; the authors uniformly 
performed the preprocessing they described in the section Data Preprocessing above on the dataset to 
ensure that they carried out the experiment under the same conditions. Table 8 shows the experiment 
was a multicategory (five-category) comparative experiment and illustrates the experimental results.

After comparison, the results showed that, under the same conditions, the CNN-LSTM model has 
better detection performance in all indicators, and the overall performance is the best. The experimental 
results showed that the authors’ CNN-LSTM model has high performance in intrusion detection.

Comparative Experiment
The authors generated the comparison algorithms from the scikit-learn library and used the NSL-
KDD detection dataset. They filtered out the feature items with low correlation such as “land” and 
“urgent” in train and test datasets, finally obtained 17-dimensional features, and performed one-hot 
encoding and min-max normalization on them through functions such as get_dummies. In view of 
the serious category imbalance in the dataset, the researchers visualized and reconstructed the sample 
distribution of the dataset through KDE. They used a Gaussian function as the kernel function.

The authors placed the processed dataset on the CNN-LSTM model for fitting training, and 
selected the training set of 0.3 as the validation set. Taking multiclassification as an example, Figure 
7 shows the iterative training effect of CNN-LSTM and Figure 8 shows the loss curve. The authors 
placed the processed dataset on the selected machine learning model algorithm for fitting, training, and 
testing. To avoid numerical fluctuation caused by errors, the researchers selected the average of five 
experimental results as the final result value. Tables 9 and 10 show the binary and multiclassification 
accuracy of each algorithm on the NSL-KDD dataset. Among them, the two categories are normal 
and abnormal, and the multicategory includes five categories: Dos, Normal, Probing, R2L, and U2R.

Table 7. Index calculation formula

Metrics Formula

Accuracy ACC = (TP + TN) / (TP + TN + FP + FN)

F1 score F1 = 2TP / (2TP + FP + TN)

Precision Precision = TP / (TP + FP)

Recall Recall = TP / (TP + FN)

Table 8. Multiclassification ablation experiment

Models Accuracy F1 Score Precision Recall

CNN 97.70% 86.71% 89.17% 86.72%

LSTM 97.02% 76.57% 77.68% 75.75%

CNN-LSTM 98.50% 91.51% 90.58% 93.08%
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After comparison, the results evidence that, in the same environment, the authors’ model performs 
better than a single traditional model in all indicators in the binary classification experiment on the 
NSL-KDKD dataset, and the overall performance is the best. In the multiclassification experiment, 

Figure 5. Training curves of the CNN-LSTM

Figure 6. Loss curves of the CNN-LSTM
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the accuracy rate, F1 score, and recall rate were all better than other traditional models, but the 
precision of 90.58% was slightly lower than the precision of 93.91% of the random forest algorithm. 
Table 11 shows the multiclassification performance comparison between NSL and KDD and existing 
research models. The results showed that the model has higher accuracy, F1 score, and recall rate on 
NSL-KDD. The precision of S-NDAE and SAVAER-DNN is higher than this model, reaching 100% 
and 95.98%, respectively. However, the overall indicators of this model are guaranteed to be 90% or 
above, and the overall performance is the best.

In addition, the authors chose the industrial internet traffic dataset and the natural gas pipeline 
dataset to validate the selected model. The dataset has a total of 274,628 samples, divided into 
214,580 normal data and 60,048 abnormal data. Each piece of data corresponds to 20 characteristic 
attributes, and about 75% of the data are missing 10 or 11 characteristic attribute values. Due to the 
large number of missing values and missing dimensions, it is inconvenient to use related interpolation 
filling methods such as mean interpolation or similar mean interpolation. Because a large amount of 
data is complemented by interpolation or padding, it is difficult to effectively express the authenticity 
and validity of the data. Therefore, the authors performed the missing value removal process on 
the Gas dataset and removed data with missing attribute values greater than or equal to 10. After 
the data filtering process, the remaining data lacked the value of the attribute column “pressure 

Table 9. Binary classification accuracy of different models (KDD)

Models Accuracy F1 Score Precision Recall

Random forest 95.44% 95.41% 95.72% 95.32%

naïve Bayes 86.95% 86.91% 87.01% 86.88%

SVM 89.94% 89.88% 90.32% 89.79%

MLP 96.10% 96.10% 96.10% 96.15%

CNN-LSTM 98.51% 98.50% 98.50% 98.51%

Table 10. Multiclassification accuracy of different models (KDD)

Models Accuracy F1 Score Precision Recall

Random Forest 94.53% 81.77% 93.91% 76.59%

Naive Bayes 83.60% 62.18% 60.55% 72.58%

SVM 89.76% 54.44% 61.33% 53.45%

MLP 95.15% 72.89% 89.17% 70.25%

CNN-LSTM 98.50% 91.51% 90.58% 93.08%

Table 11. Multiclassification accuracy of different models (KDD)

Paper Models Accuracy F1 Score Precision Recall

Shone et al., 2018 S-NDAE 85.42% 87.37% 100% 85.42%

Yang et al., 2020 SAVAER-DNN 89.36% 90.08% 95.98% 84.86%

Alfoudi et al., 2022 DBSCAN 86.82% 87.87% 88.95% 86.82%

Yang et al., 2023 NRS-SSA 78.75% 74.9% 80.41% 78.75%

Model in this paper CNN-LSTM 98.50% 91.51% 90.58% 93.08%
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measurement,” so the authors deleted this column and ignored the impact of this column on the 
data. After the above operations, they finally obtained 64,100 complete pieces of data, including 
four attack categories, namely Normal, MSCI, MPCI, and Dos. The authors performed the same 
data preprocessing on the cleaned data to obtain a training set with a ratio of 0.8 and a test set with 
a ratio of 0.2. Figure 7 illustrates the generated distribution diagram, where 0-7 represent different 
peaks, and the corresponding sample categories are Normal, NMRI, CMRI, MSCI, MPCI, MFCI, 
Dos, and Reconnaissance. Then, the authors replaced the corresponding input and output, performed 
training fitting, and compared with other models. Table 12 shows the results of multiclassification 
experiments on the Gas dataset.

The comparison results show that the CNN-LSTM intrusion detection classification algorithm 
the authors proposed in this paper has better classification performance in the Gas industrial network 
dataset. The accuracy and precision of the model were 97.09% and 97.01%, respectively, which are 
higher than the existing models. The F1 score of 93.75% was slightly lower than that of the DNN-DT 
model (93.83%). The recall rate was 90.84%, which is lower than that of the DNN-DT model (93.72%) 
and of the LSTM-AE-OCSVM model (96.28%). In summary, the overall performance of the model 
was better, which proves the effectiveness and portability of the proposed method.

Figure 7. Diagram of balanced KDE of gas dataset

Table 12. Multiclassification accuracy of different models (gas)

Paper Models Accuracy F1 Score Precision Recall

Feng et al., 2017 LSTM 92% 85% 94% 78%

Al-Abassi et al., 2020 DNN-DT 96% 93.83% 94.63% 93.72%

Chang et al., 2019 CAE 95.53% 89.08% 95.43% 83.52%

Ha et al., 2022 LSTM-AE-OCSVM - 90.12% 84.70% 96.28%

Model in this paper CNN-LSTM 97.09% 93.75% 97.01% 90.84%
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CONCLUSION

In this paper, the authors proposed an industrial Internet network intrusion detection method integrating 
CNN and LSTM. The researchers tested the performance of the proposed model on the NSL-KDD 
dataset. They performed the KDE on the dataset to analyze the data distribution, processed the 
relevant features through the Pearson correlation coefficient, and continuously convoluted the local 
low-level features into high-level features to cover more data information. Then, they used the LSTM 
to extract timing features, better consider the impact of timing, and reduce the FP rate. Finally, they 
compared the proposed model with machine learning algorithms (e.g., SVM, random forest, MLP, 
and naive Bayes) and existing models. In the KDD dataset, the proposed model has higher precision 
and recall than the machine learning algorithm; compared with the existing model, it has better 
classification performance, but the precision index is poor, and the overall index remains at more than 
90%. In the Gas dataset, the proposed model is almost the same as the existing model; it performs 
better in accuracy and precision, slightly worse in F1 and recall, and the overall index can also be 
maintained above 90%. Overall, the performance of the model on KDD and Gas fully demonstrates its 
effectiveness and generalization. At this stage, the authors deployed the proposed algorithm model in 
the laboratory local area network (LAN) to realize real-time traffic detection in the laboratory LAN. 
However, due to insufficient abnormal data in the LAN dataset, the detection effect is mediocre. In 
the future, the authors will consider combining the concept of cloud-edge collaboration to optimize 
learning performance and efficiency and improve on this model to make it more applicable to actual 
industrial Internet scenarios.
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